1. Число делится на 12 без остатка, если оно делится на 3 и на 4. 2. Число делится на 4, если оно четное и если число составленное из последних 2-х цифр данного числа делится на 4. 3. Число делится на 3, если сумма цифр данного числа делится на 3.
Число не может заканчиваться цифрой 5, т.к. оно не будет делиться на 4. Цифру 5 вычеркиваем. Получили число 8453762, осталось вычеркнуть 2 цифры.
Допустим, число заканчивается цифрой 2, число составленное из последних 2-х цифр, должно делиться без остатка на 4. 62 на 4 не делится, а 72 - делится (72:4=18). Вычеркиваем цифру 6, получили число 845372, которое делится на 4.
Проверяем, делится ли оно на 3: 8+4+5+3+7+2=29. 29 на 3 не делится. Цифры 7 или 2 вычеркнуть нельзя, т.к. тогда число снова не будет делиться на 4. Осталось вычеркнуть одну из цифр 8, 4, 5 или 3. 29-8=21 - делится на 3 29-4=25 - не делится 29-5=24 - делится 29-3=26 - не делится. Можем вычеркнуть цифру 8, тогда получим число 45372, которое делится на 12. Или можем вычеркнуть цифру 5, получим число 84372, которое тоже делится на 12.
Это задача,насколько я помню,решается методом интервалов:сначала нужно каждый множитель приравнять к 0.Чтобы первый множитель(x-4) был равен 0,x=4.Так же со второй скобкой.Два получившихся значения x выстраиваем на координатном луче.Соединяем два значения дугой.И проводим еще две дуги от концов средней дуги до бесконечностей(+ или -).Знаки в дугах должны чередоваться.Например,подставим 0 в интервал между первым иксом и вторым.Если в результате вычисления и перемножения получается полож.число,над скобкой ставим +,а над остальными -.Если отриц.,над средней -,над остальными +.Если случай 1(когда + в серед.),тогда пишем y>0 при x (знак принадлежности) [x1;x2].Если случай 2(Когда - в серед.),пишем y>0 при x (зн.принадл.[-беск.;x1]и[x2;+беск.],где x1-меньшее значение x,x2-большее.
2. Число делится на 4, если оно четное и если число составленное из последних 2-х цифр данного числа делится на 4.
3. Число делится на 3, если сумма цифр данного числа делится на 3.
Число не может заканчиваться цифрой 5, т.к. оно не будет делиться на 4. Цифру 5 вычеркиваем. Получили число 8453762, осталось вычеркнуть 2 цифры.
Допустим, число заканчивается цифрой 2, число составленное из последних 2-х цифр, должно делиться без остатка на 4.
62 на 4 не делится, а 72 - делится (72:4=18). Вычеркиваем цифру 6, получили число 845372, которое делится на 4.
Проверяем, делится ли оно на 3:
8+4+5+3+7+2=29. 29 на 3 не делится. Цифры 7 или 2 вычеркнуть нельзя, т.к. тогда число снова не будет делиться на 4. Осталось вычеркнуть одну из цифр 8, 4, 5 или 3.
29-8=21 - делится на 3
29-4=25 - не делится
29-5=24 - делится
29-3=26 - не делится.
Можем вычеркнуть цифру 8, тогда получим число 45372, которое делится на 12.
Или можем вычеркнуть цифру 5, получим число 84372, которое тоже делится на 12.
По этой же схеме можно найти число 84576.
Выбирайте любое :)