В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Черпачок
Черпачок
27.12.2021 03:58 •  Алгебра

4 задания номер 2)
2•(5√3)√3•9√4•4√2

10√7•3√6

Показать ответ
Ответ:
nik232451
nik232451
02.03.2020 20:59
Решение
a)  Пусть ε > 0. Требуется поэтому ε найти такое δ > 0, чтобы
 из условия 0 < |x − x0| < δ, т.е. из 0 < |x - 0| < δ
вытекало бы неравенство |f(x) − A| < ε, т.е. |3x - 2 − (- 2)| < ε.
Последнее неравенство приводится к виду |3(x )| < ε, т.е. |x | < (1/3)* ε. Отсюда следует, что если взять δ = ε/3 , то неравенство 0 < |x | < δ
будет автоматически влечь за собой неравенство |3x - 2 − (- 2)| < ε.
 По определению это и означает, что lim x→ −2  (3x - 2) = −2.
0,0(0 оценок)
Ответ:
SpaceRZX
SpaceRZX
08.02.2021 20:45
Составьте уравнение той касательной к графику функции y=ln3x, которая проходит через начало координат

Заметим, что данная функция не проходит через начало координат, а значит точка О(0;0) не является точкой касания. 

Пусть точка касания А(а;в)

составим уравнение касательной в точке А

\dispaystyle y_{kac}=y(x_0)+y`(x_0)*(x-x_0)

где y(x0)=в. x0=a

\dispaystyle y`(x)=(ln3x)`= \frac{1}{3x}*3= \frac{1}{x}

тогда уравнение касательной будет выглядеть так: 
\dispaystyle y_{kac}=b+ \frac{1}{a}(x-a)

и эта прямая проходит через точку О(0;0)
подставим эти координаты

\dispaystyle 0=b+ \frac{1}{a}(0-a)=b-1\\b=1

тогда уравнение касательной примет вид

\dispaystyle y_{kac}=1+ \frac{1}{a}(x-a)=1+ \frac{x}{a}-1= \frac{x}{a}

Так как касательная у нас проведена к нашей функции то у них есть общая точка пересечения

\dispaystyle \frac{x}{a}=ln3x

т.к. в=1, то а=е/3 (ln3x=1: 3x=e; x=e/3)

тогда

\dispaystyle \frac{e}{3a}=ln(3* \frac{e}{3})\\ \frac{e}{3a}=1\\a= \frac{e}{3}

 и тогда точка касания А(е/3;1)
уравнение касательной 
\dispaystyle y=\frac{x}{e/3}= \frac{3x}{e}
0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота