Летя за ветром, его скорость стала 45+х, а против 45-х. В обеих случаях он пролетел 120км и потратил на все это в сумме 6 часов. Ко времени, за которое он пролетел двигаясь по ветру, добавляем время за которое он пролетел, летя против ветра и получаем 6. Решаем уравнение отталкиваясь от формулы S/v=t:
120/(45+x) + 120/(45-x) = 6
((120(45-х)+120(45+х))/((45+x)(45-x))=6
(5400-120x+5400+120x)/(2025+45x-45x-x^2)=6
10800/(2025-x^2)=6
10800=6(2025-x^2)
10800=12150-6x^2
6x^2=12150-10800
6x^2=1350
x^2=225
x1=15
x2=-15
Скорость не может быть отрицательной, поэтому х=15
15
Объяснение:
x-скорость ветра
Летя за ветром, его скорость стала 45+х, а против 45-х. В обеих случаях он пролетел 120км и потратил на все это в сумме 6 часов. Ко времени, за которое он пролетел двигаясь по ветру, добавляем время за которое он пролетел, летя против ветра и получаем 6. Решаем уравнение отталкиваясь от формулы S/v=t:
120/(45+x) + 120/(45-x) = 6
((120(45-х)+120(45+х))/((45+x)(45-x))=6
(5400-120x+5400+120x)/(2025+45x-45x-x^2)=6
10800/(2025-x^2)=6
10800=6(2025-x^2)
10800=12150-6x^2
6x^2=12150-10800
6x^2=1350
x^2=225
x1=15
x2=-15
Скорость не может быть отрицательной, поэтому х=15
1. находим критические точки. приравнивая производную к нулю.
2. устанавливаем знак производной. т.е. решаем неравенство f'>0( или f'<0)
3 промежутки в которых производная больше нуля - промежутки строго возрастания функции.
а) у'>0
10x-3>0⇒x>0.3, т.к функция непрерывна во всей своей обл. определения. то в промежутки возрастания и убывания можно включить и концы промежутка.
при х∈[0.3;+∞) функция возрастает, при х∈(-∞;0.3] убывает.
2. у'=2/х² эта производная при х∈(-∞;0) и (0;+∞) положительна. значит, функция возрастает при х∈(-∞;0) и (0;+∞)
3. у'=-6/х3, при х∈(0;+∞) функция убывает. при х∈(-∞;0) возрастает.
4. у'=(2х²-х²-1)/х²=(х²-1)х²=(х-1)(х+1)/х²
___-101
+ - - +
убывает функция на промежутках [-1;0) и (0;1] и возрастает (-∞;-1] и [1;+∞)