Как решать квадратные уравнения? Смотри. Уравнение: ах^2+bx+c=0 называется квадратным. Например, х^2-х-6=0 Решается оно через дискриминант. Точное определение дискриминанта, к сожалению, дать не смогу. Находится он по формуле: b^2-4ac. Найдём дискриминант нашего уравнения: Д=(-1)^2-4*1*(-6)=1+24=25. А теперь нам предстоит найти корни уравнения. В квадратном уравнении, как правило, их 2. Реже - 1 корень, или вовсе корней нет. Всё зависит от дискриминанта. Если он больше нуля - то 2 корня, и формула: х_1,2=(-b(+-)√Д) / 2а. Если дискриминант равен 0, то 1 корень, и формула: х=-b/2a. А если дискриминант меньше нуля - то корней нет. Найдём корни нашего уравнения: Их у нас два, так как дискриминант больше нуля: х_1,2=(1+-√25)/2=(1+-5)/2. Это формула двух корней. А теперь найдём каждый корень по отдельности: х_1=(1+5)/2=6/2=3; х_2=(1-5)/2=-4/2=-2. Корнями будут являться числа 3 и -2. Итак, запишем теперь ответ: х_1=3; х_2=-2.
Всё просто! Со временем ты будешь щелкать эти уравнения, как семечки! ;)
А решение твоих уравнений находится во вложении, только там кратко, не запутайся)
Высоты треугольника пересекаются в одной точке.
Следовательно, достаточно найти уравнения двух любых высот треугольника и точку их пересечения, решив систему двух уравнений.
Высота треугольника — это перпендикуляр, опущенный из вершины треугольника к прямой, содержащей противолежащую сторону.
Значит надо найти уравнение стороны треугольника и уравнение прямой, проходящей через противоположную вершину, перпендикулярно этой стороне.
Уравнение прямой АВ найдем по формуле:
(X-Xa)/(Xb-Xa)=(Y-Ya)/(Yb-Ya). Или
(X+4)/2=(Y-0)/-2 - каноническое уравнение =>
y=-x-2 - уравнение прямой с угловым коэффициентом k=-1.
Условие перпендикулярности прямых: k1=-1/k => k1=1.
Тогда уравнение перпендикуляра к стороне АВ из вершины С
найдем по формуле:
Y-Yс=k1(X-Xс) или Y-2=X-2 =>
y=х (1) - это уравнение перпендикуляра СС1.
Уравнение прямой АС:
(X-Xa)/(Xс-Xa)=(Y-Ya)/(Yс-Yа). Или
(X+4)/6=(Y-0)/2 - каноническое уравнение =>
y=(1/3)x+4/3 - уравнение прямой с угловым коэффициентом k=1/3.
Условие перпендикулярности прямых: k1=-1/k => k1 = -3.
Тогда уравнение перпендикуляра к стороне АС из вершины В
найдем по формуле:
Y-Yb=k1(X-Xb) или Y+2=-3(X+2) =>
y=-3х-8 (2)- это уравнение перпендикуляра BB1.
Точка пересечения перпендикуляров имеет координаты:
х=-3х - 8 (подставили (1) в (2)) => х = -2.
Тогда y = -2.
ответ: точка пересечения высот совпадает с вершиной В(-2;-2)
треугольника, то есть треугольник прямоугольный с <B=90°.
Для проверки найдем длины сторон треугольника:
АВ=√(((-2-(-4))²+(-2)²) = 2√2.
ВС=√(((2-(-2))²+(2-(-2))²) = 4√2.
АС=√(((2-(-4))²+2²) = 2√10.
АВ²+ВС² = 40; АС² = 40.
По Пифагору АВ²+ВС² = АС² - треугольник прямоугольный.
Объяснение:
Как решать квадратные уравнения?
Смотри. Уравнение: ах^2+bx+c=0 называется квадратным.
Например, х^2-х-6=0
Решается оно через дискриминант. Точное определение дискриминанта, к сожалению, дать не смогу. Находится он по формуле: b^2-4ac.
Найдём дискриминант нашего уравнения:
Д=(-1)^2-4*1*(-6)=1+24=25.
А теперь нам предстоит найти корни уравнения. В квадратном уравнении, как правило, их 2. Реже - 1 корень, или вовсе корней нет. Всё зависит от дискриминанта.
Если он больше нуля - то 2 корня, и формула: х_1,2=(-b(+-)√Д) / 2а.
Если дискриминант равен 0, то 1 корень, и формула: х=-b/2a.
А если дискриминант меньше нуля - то корней нет.
Найдём корни нашего уравнения: Их у нас два, так как дискриминант больше нуля:
х_1,2=(1+-√25)/2=(1+-5)/2.
Это формула двух корней. А теперь найдём каждый корень по отдельности:
х_1=(1+5)/2=6/2=3;
х_2=(1-5)/2=-4/2=-2.
Корнями будут являться числа 3 и -2.
Итак, запишем теперь ответ: х_1=3; х_2=-2.
Всё просто! Со временем ты будешь щелкать эти уравнения, как семечки! ;)
А решение твоих уравнений находится во вложении, только там кратко, не запутайся)