при n>1 : n^2-2n+2=(n-1)^2+1 больше 1 и число для любого n>=2 составное, так как раскладывается в произведение двух чисел, которое не явлется произведением этого числа на 1.
при n>1 : n^3-n+1=n(n-1)(n+1)+1 больше 1 и число для любого n>=2 составное, так как раскладывается в произведение двух чисел, которое не явлется произведением этого числа на 1.
1.Найдите область определения функции:
а) y=3/(х+7) , знаминатель не равен нулю: х+7≠0 х≠-7
E(y)∈(-∞;-7)U(-7;+∞)
б) F(x)=√(3-х) ,подкоренное выражение ≥0 : 3-х≥0 x≤3
E(x)∈(-∞;3]
2.Найдите нули функции-
а) у=3х+1
при x=0 : у=3*(0)+1 y=1
при y=0 : 0=3x+1 x=-1/3
y0=(-1/3;0)
ответ: x0=(0;1) , y0=(-1/3;0)
б) у=х^2 -9
x0=-b/2a=0/-2=0
y0=(0)^2 -9=-9
ответ:x0=0 , y0=-9
3. При каких значениях t функция у=2t -1 принимает отрицательные значения?
2t -1<0
2t<1
t<0,5
t∈(-∞;0,5)
ответ:y<0 ,при t∈(-∞;0,5).
n^4+4=n^4+4n^2-4n^2+4=(n^4+4n^2+4)-4n^2=(n^2+2)^2-(2n)^2=(n^2+2n+2)(n^2-2n+2)
при n>1 : n^2-2n+2=(n-1)^2+1 больше 1 и число для любого n>=2 составное, так как раскладывается в произведение двух чисел, которое не явлется произведением этого числа на 1.
n^5+n+1=n^5-n^2+n^2+n+1=n^2(n^3-1)+(n^2+n+1)=n^2(n-1)(n^2+n+1)+(n^2+n+1)=
=(n^3-n+1)(n^2+n+1)
при n>1 : n^3-n+1=n(n-1)(n+1)+1 больше 1 и число для любого n>=2 составное, так как раскладывается в произведение двух чисел, которое не явлется произведением этого числа на 1.