тангенс угла наклона прямой, содержащей диагональ квадрата (в условиях она проходит через данные вершины) = -1/2. угол между сторонами квадрата и диагональю - пи/4. тогда тангенсы углов наклона прямых, содержащих стороны квадрата, равны -3 и 1/3 (соответственные значения получаются применением формулы тангенса суммы к тг (пи - арктг (1/2) - пи/4) и тг (пи - арктг (1/2) + пи/ значит, уравнения прямых принимают вид у = -3х - 1 и у = (1/3)х - 1.
п. с. почему-то символы из раскладки использовать не получается, поэтому функции тангенс и арктангенс обозначены соответственно тг и арктг.
cos2x=cosx-1 так по формуле cos2x=cos²x-sin²x а 1=cos²x+sin²x теперь подставляем эти формулы вместо cos2x cos²x-sin²x-cosx+(cos²x+sin²x) таким образом мы вместо sin²x=1-cos²x cos²x-(1-cos²x)-cosx+(cos²x+(1-cos²x)) открываем скобки cos²x-1+cos²x-cosx+cos²x+1-cos²x 2cos²x-cosx=0 ⇒ cosx(2cosx-1)=0 1) cosx=0 x=2pk 2) 2cosx-1=0 ⇒ 2cosx=1 ⇒cosx=1|2⇒x=P|3+2Pk
II 2sin²x-5=-5cosx ⇒ 2(1-cos²x)-5 +5cosx=0 ⇒2-2cos²x-5+5cosx ⇒ -2cos²x-3+5cosx=0 \-1 ⇒ 2cos²x+3-5cosx=0 ⇒ 2cosx-5cosx+3=0 ⇒ cosx=a теперь вместо кос вставим а и решаем дискриминант 2a²-5a+3=0 D=∨25-2*3*4=1 X1=(5-1)|4=1 X2=(5+1)|4= 3|2 КОРНИ НАЙДЕНЫ А ТЕПЕРЬ ПОДСТАВЛЯЕМ COSX 1) COSX=1 X=2Pk 2) COSX=3|2 X=+-arccos3|2+2Pk ,
ответ:
тангенс угла наклона прямой, содержащей диагональ квадрата (в условиях она проходит через данные вершины) = -1/2. угол между сторонами квадрата и диагональю - пи/4. тогда тангенсы углов наклона прямых, содержащих стороны квадрата, равны -3 и 1/3 (соответственные значения получаются применением формулы тангенса суммы к тг (пи - арктг (1/2) - пи/4) и тг (пи - арктг (1/2) + пи/ значит, уравнения прямых принимают вид у = -3х - 1 и у = (1/3)х - 1.
п. с. почему-то символы из раскладки использовать не получается, поэтому функции тангенс и арктангенс обозначены соответственно тг и арктг.
объяснение:
cos²x-sin²x-cosx+(cos²x+sin²x) таким образом мы вместо sin²x=1-cos²x
cos²x-(1-cos²x)-cosx+(cos²x+(1-cos²x)) открываем скобки
cos²x-1+cos²x-cosx+cos²x+1-cos²x
2cos²x-cosx=0 ⇒ cosx(2cosx-1)=0
1) cosx=0 x=2pk
2) 2cosx-1=0 ⇒ 2cosx=1 ⇒cosx=1|2⇒x=P|3+2Pk
II 2sin²x-5=-5cosx ⇒ 2(1-cos²x)-5 +5cosx=0 ⇒2-2cos²x-5+5cosx ⇒
-2cos²x-3+5cosx=0 \-1 ⇒ 2cos²x+3-5cosx=0 ⇒ 2cosx-5cosx+3=0 ⇒ cosx=a теперь вместо кос вставим а и решаем дискриминант
2a²-5a+3=0 D=∨25-2*3*4=1 X1=(5-1)|4=1 X2=(5+1)|4= 3|2
КОРНИ НАЙДЕНЫ А ТЕПЕРЬ ПОДСТАВЛЯЕМ COSX
1) COSX=1 X=2Pk
2) COSX=3|2 X=+-arccos3|2+2Pk ,