Посчитаем сначала количество чисел, записываемых цифрами от до , а затем из этого числа вычтем те, среди которых есть четыре идущих подряд. Сразу заметим, что если в таком числе есть четыре подряд идущих числа, то и в самом числе они должны идти подряд.
Выпишем числа от до : . Любые вычеркнутых цифры оставят число, в котором цифры идут по возрастанию. Наоборот, любое такое число может быть получено описанной операцией. Число вычеркнуть: .
Теперь посчитаем количество тех, в которых есть четыре подряд идущих. В этом случае мы можем вычеркивать только из -ех оставшихся чисел. Поскольку четверок подряд идущих , то всего искомых чисел .
2) β = 180-(30+75) = 75°. Треугольник равнобедренный: с=в=4,56.
а = (b*sin α)/sin β = (4,56*0,5)/0,.965926 = 2,36043.
4) c = √(a²+b²-2ab*cosγ) = √(144+64-2*12*8*0,5) = √112 = 4√7 ≈ 10,58301.
sin β = b*sin γ / c = (8*√3)/(2*4√7) = √(3/7).
β = arc sin(√(3/7)) = 40,86339°.
α = 180-60-40,86339 = 79,10661°.
6) b =√(49+100-2*7*10*(-0,5)) = √219 ≈ 14,79865.
sin α = a*sin β/b = (*√3)/(2*√219) = 0,409644.
α = arc sin 0,409644 = 24,18547°.
γ = 180-120-24,18247 = 35,81753°.
8) Применяется теорема косинусов.
α = 18,19487°,
β = 128,68219°,
γ = 33,12294°.
Посчитаем сначала количество чисел, записываемых цифрами от до , а затем из этого числа вычтем те, среди которых есть четыре идущих подряд. Сразу заметим, что если в таком числе есть четыре подряд идущих числа, то и в самом числе они должны идти подряд.
Выпишем числа от до : . Любые вычеркнутых цифры оставят число, в котором цифры идут по возрастанию. Наоборот, любое такое число может быть получено описанной операцией. Число вычеркнуть: .
Теперь посчитаем количество тех, в которых есть четыре подряд идущих. В этом случае мы можем вычеркивать только из -ех оставшихся чисел. Поскольку четверок подряд идущих , то всего искомых чисел .
Итого .