Запишем многочлен в виде P(x)=a*x⁴+b*x³+c*x²+d*x+e. Из равенства P(1)=P(-1) следует равенство a+b+c+d+e=a-b+c-d+e, или b+d=-(b+d). Но это возможно только при b+d=0, откуда d=-b. Поэтому многочлен приобретает вид P(x)=a*x⁴+b*x³+c*x²-b*x+e. Из равенства P(2)=P(-2) следует равенство 16*a+8*b+4*c-2*b+e=16*a-8*b+4*c+2*b+e, или 16*a+6*b+4*c+e=16*a-6*b+4*c+e, или 6*b=-6*b. Но это возможно только при b=0, а тогда и d=-b=0. Теперь многочлен P(x) приобретает вид P(x)=a*x⁴+c*x²+e. Подставляя в него вместо x -x, получаем P(-x)=a*(-x)⁴+c*(-x)²+e=a*x⁴+c*x²+e=P(x). Утверждение доказано.
ответ:
10 минут
объяснение:
последняя строка таблицы говорит о том что ванна полностью опорожнилась за 60 минут, т.е.
( \frac{1}{x+2} - \frac{1}{x})*60 = -1 \\
\frac{x-x-2}{x(x+2)}*60 = -1 \\
\frac{-2}{x(x+2)} = - \frac{1}{60} \\
x(x+2)=120 \\
x^{2} +2x-120=0 \\
d = 4 + 4*120 = 484 \\
\sqrt{d} = 22 \\
x_{1} = \frac{-2+22}{2}=10 \\
x_{2} = \frac{-2-22}{2}=-12 \\
второй корень посторонний.
ответ: второй кран опорожнит полную ванну за 10 минут.
ответ: утверждение доказано.
Объяснение:
Запишем многочлен в виде P(x)=a*x⁴+b*x³+c*x²+d*x+e. Из равенства P(1)=P(-1) следует равенство a+b+c+d+e=a-b+c-d+e, или b+d=-(b+d). Но это возможно только при b+d=0, откуда d=-b. Поэтому многочлен приобретает вид P(x)=a*x⁴+b*x³+c*x²-b*x+e. Из равенства P(2)=P(-2) следует равенство 16*a+8*b+4*c-2*b+e=16*a-8*b+4*c+2*b+e, или 16*a+6*b+4*c+e=16*a-6*b+4*c+e, или 6*b=-6*b. Но это возможно только при b=0, а тогда и d=-b=0. Теперь многочлен P(x) приобретает вид P(x)=a*x⁴+c*x²+e. Подставляя в него вместо x -x, получаем P(-x)=a*(-x)⁴+c*(-x)²+e=a*x⁴+c*x²+e=P(x). Утверждение доказано.