a) 12b+8>4b+8(b-0,5) Рассмотрим разность левой и правой части, если она > 0 то неравенство доказано 12b + 8 - 4b- 8(b-0,5) =12b + 8 - 12b + 4 = 12> 0 неравенство доказано б) (b-3)(b+3)>b^2 - 14 Рассмотрим разность левой и правой части, если она > 0 то неравенство доказано (b-3)(b+3) - b^2 + 14 = b^2 - 9 - b^2 + 14 = 5>0 неравенство доказано в) 2x^2 +13x+3<(2x+5)(x+4) Рассмотрим разность левой и правой части, если она < 0 то неравенство доказано 2x^2 + 13x + 3 - (2x+5)(x+4) = 2x^2 + 13x + 3 - 3x^2 - 13x - 20 = -x^2 - 17 < 0 Так как -x^2<=0, а -17<0 всегда неравенство доказано
2
3
2x³-3x²-11x+6 |x-3
2x³-6x² 2x^2+3x-2
---------------
3x²-11x
3x²-9x
-----------------
-2x+6
-2x+6
---------------
0
x=-2 2*4+3*(-2)-2=8-6-2=0
4
15^9 оканчивается на 5
26^9 оканчивается на 6
39^9
в 1 оканчивается на 9
во 2 оканчивается на 1
в 3 оканчивается на 9
.............................................
в 9 оканчивается на 9 (в нечетной степени)
5+6+9=20,значит оканчивается на 0
5
99^9 оканчивается на 9, значит (99^99)^9 оканчивается на 9 (см 4)
6
x^4+6x³+3x²+ax+b |x²+4x+3
x^4+4x³+3x² x²+2x-8
----------------------
2x³+ +ax
2x²+8x²+6x
----------------------------
-8x²+(a-6)x+b
-8x²-32x-24
-----------------------------
0
a-6=-32⇒a=-32+6=-26
b=-24
Рассмотрим разность левой и правой части, если она > 0 то неравенство доказано
12b + 8 - 4b- 8(b-0,5) =12b + 8 - 12b + 4 = 12> 0
неравенство доказано
б) (b-3)(b+3)>b^2 - 14
Рассмотрим разность левой и правой части, если она > 0 то неравенство доказано
(b-3)(b+3) - b^2 + 14 = b^2 - 9 - b^2 + 14 = 5>0
неравенство доказано
в) 2x^2 +13x+3<(2x+5)(x+4)
Рассмотрим разность левой и правой части, если она < 0 то неравенство доказано
2x^2 + 13x + 3 - (2x+5)(x+4) = 2x^2 + 13x + 3 - 3x^2 - 13x - 20 = -x^2 - 17 < 0
Так как -x^2<=0, а -17<0 всегда
неравенство доказано