Пусть собственная скорость катера - х км/ч, тогда скорость катера по течению - (х+2)км/ч, скорость катера против течения - (х-2)км/ч 20/(х+2)+32/(х-2)=3, умножим обе части уравнения на (х²-4) 20х-40+32х+64-3х²+12=0 3х²-52х-36=0, D₁=676+108=784=28², х₁=(26+28)/3=18, х₂=(26-28)/3=-2/3 - не удовл условию задачи, ответ: 18км/ч
Пусть числитель дроби - х, знаменатель - (х+5) х/(х+5)=(х+2)/(х+3)-18/35 Умножим обе части уравнения на (х+5)(х+3)35 35х²+105х-35х²-245х-350+18х²+144х+270=0 18х²+4х-80=0 9х²+2х-40=0 D₁=1+360=361=19² x₁=(-1+19)/9=2 x₂=(-1-19)/9=-20/9 не удовл условию задачи ответ: 2/5
1920; 1984
Объяснение:
Ясно, что n > k
Предположим, что n>2^11 = 2048, но тогда
min(2^n - 2^k) = 2^12 - 2^11 =2048 (min - минимально возможно значение)
Это нас не устраивает, ибо XX век это все года принадлежащие промежутку: [1901; 2000]
Аналогично, если n<2^11, то
max(2^n - 2^k) = 2^10 - 2^1 =1022 (max - максимально возможное значение)
Это так же не укладывается в интервал: [1901; 2000]
Таким образом, n = 2^11, а для k тогда остается только два варианта:
k= 6; 7
То есть существует только два таких года:
1) 2^11 - 2^6 = 2048 - 64 = 1984
2) 2^11 - 2^7 = 2048 - 128 = 1920
Если не помните наизусть, приложил табличку степеней двоек.
20/(х+2)+32/(х-2)=3, умножим обе части уравнения на (х²-4)
20х-40+32х+64-3х²+12=0
3х²-52х-36=0, D₁=676+108=784=28², х₁=(26+28)/3=18, х₂=(26-28)/3=-2/3 - не удовл условию задачи,
ответ: 18км/ч
Пусть числитель дроби - х, знаменатель - (х+5)
х/(х+5)=(х+2)/(х+3)-18/35
Умножим обе части уравнения на (х+5)(х+3)35
35х²+105х-35х²-245х-350+18х²+144х+270=0
18х²+4х-80=0
9х²+2х-40=0 D₁=1+360=361=19²
x₁=(-1+19)/9=2 x₂=(-1-19)/9=-20/9 не удовл условию задачи
ответ: 2/5