При умножении степеней с одинаковыми основаниями основание остаётся без изменений, а показатели степеней складываются.
При делении степеней с одинаковыми основаниями основание остаётся без изменений, а из показателя степени делимого вычитают показатель степени делителя. (Проще говоря, вычитаются).
1)0,6¹³:0,6¹¹=0,6¹³⁻¹¹=0,6²=0,6*0,6=0,36
2)(-5 и 3/7)²²: (-5 и 3/7)²¹=(-5 и 3/7)²²⁻²¹=(-5 и 3/7)¹= -5 и 3/7
Объяснение:
При умножении степеней с одинаковыми основаниями основание остаётся без изменений, а показатели степеней складываются.
При делении степеней с одинаковыми основаниями основание остаётся без изменений, а из показателя степени делимого вычитают показатель степени делителя. (Проще говоря, вычитаются).
1)0,6¹³:0,6¹¹=0,6¹³⁻¹¹=0,6²=0,6*0,6=0,36
2)(-5 и 3/7)²²: (-5 и 3/7)²¹=(-5 и 3/7)²²⁻²¹=(-5 и 3/7)¹= -5 и 3/7
3)(-1,21)²⁴: (-1,21)²³=(-1,21)²⁴⁻²³=(-1,21)¹= -1,21
4)(pg)¹⁸: (pg)⁸: (pg)³=(pg)⁷
а)(pg)¹⁸: (pg)⁸=(pg)¹⁸⁻⁸= (pg)¹⁰
б)(pg)¹⁰: (pg)³=(pg)¹⁰⁻³= (pg)⁷
1.в
2.в
3.в
4.б
5.б
6.а
7.а) x1=0; x2=6; б) x1=-0,4; x2=0,4;
8.(2x+9)*(x-1)=0
x1= -4.5; x2= 1;
9. x^2-5x+4
10. (3x+1)^2=4x^2+5x-1
5x^2+5x+2=0
дискриминант отрицательный.
11. x1=-4; x2=-3; x3=3; x4=4;
12. За т. Вієта сума коренів квадратного рівняння дорівнює другому коефіцієнтові, взятому із протилежним знаком (тобто, x_1+x_2=14)
Формулу x_1^2+x_2^2 можна представити як (x_1+x_2)^2-2x_1*x_2, але для цього ми маємо знати ще добуток коренів.
Добуток коренів (знову-таки за т. Вієта) дорівнює третьому коефіцієнтові (тобто, x_1*x_2=5)
Підставимо значення у формулу: (x_1+x_2)^2-2*x_1*x_2=14^2-2*5=196-10=186