5.158. Алмас дүкеннен бағасы 15 тг қаламдар мен бағасы 40 тг бiрнеше дәптер алып, барлығына 270 тг төледі. Алмас дүкеннен неше қалам және неше дәптер алды? Есептің әртүрлі шешімдерін табыңдар. Есепті теңдеу құру арқылы шығару.
Сначала вырази синусы данных углов через синус углов из первой четверти: sin (–55°) = –sin 55°, потом sin 600° = sin (240° + 360°) = sin 240° = sin (180° + 60°) = =–sin 60°, sin 1295° = sin (215° + 3*360°) = sin 215° = sin (180° + 35°) = –sin 35°. И так как углы 55°, 60° и 35° принадлежат первой четверти, в которой большему углу соответствует больший синус, то sin 35° < sin 55° < sin 60°. Но тогда –sin 35° > –sin 55° > –sin 60°, а поэтому sin 1295° > sin (–55°) > sin 600°. ответ:sin 600°, sin (–55°), 1295°
а) 5х2 = 9х + 2; б) -х2 = 5x - 14;
в) 6х + 9 = х2; г) z - 5 = z2 - 25;
д) у2 = 520 - 576; е) 15у2 - 30 = 22y + 7;
ж) 25р2 = 10p - 1; з) 299х2 + 100x = 500 - 101х2. ответ:а) 5х2 = 9х + 2; 5х2 - 9х - 2 = 0; D = 81 + 4 • 5 • 2 = 81 + 40= 121; х = (9±11)/10; х1 = -0,2; х2 = 2;
б) -х2 = 5x - 14; х2 + 5х - 14 = 0; D = 25 + 4 • 14 = 81; х = (-5±9)/2; х1 = -7; х2 = 2;
в) 6х + 9 = х2; х2 - 6х - 9 = 0; D = 36 + 4 • 9 = 36 + 36 = 72; х = (6±√72)/2; = 3 ± 3√2;
г) z - 5 = z2 - 25; z2 - z - 20 = 0; D = 1 + 80 = 81; х = (1±9)/2;; х1 = -4; х2 = 5;
д) у2 = 520 - 576; у2 - 52у + 576 = 0; D1 = 262 - 576 = 676 - 576 = 100; х = (26±10)/1; х1 = 16; х2 = 36;
е) 15у2 - 30 = 22y + 7; 15у2 -22у - 37 = 0; D = 112 + 37 • 15 = 676; х = (11±26)/15; х1 = -1; х2 = 37/15 = 2 7/15;
ж) 25р2 = 10p - 1; 25р2 - 10р + 1; D1 = 25 - 25 = 0; p = 5/25 = 1/5;
з) 299х2 + 100x = 500 - 101х2; 400х2 + 100х - 500 = 0; 4х2 + х - 5 = 0; D = 1 + 4 • 4 • 5 = 81; х = (-1±9)/8; х1 = -1 1/4; х2 = 1.
sin (–55°) = –sin 55°,
потом sin 600° = sin (240° + 360°) = sin 240° = sin (180° + 60°) =
=–sin 60°,
sin 1295° = sin (215° + 3*360°) = sin 215° = sin (180° + 35°) = –sin 35°.
И так как углы 55°, 60° и 35° принадлежат первой четверти, в которой большему углу соответствует больший синус,
то sin 35° < sin 55° < sin 60°.
Но тогда –sin 35° > –sin 55° > –sin 60°,
а поэтому sin 1295° > sin (–55°) > sin 600°.
ответ:sin 600°, sin (–55°), 1295°