1) 4x + 6y = a
Так как пара чисел (–2; 4) является решением, то, подставив в уравнение числа –2 и 4, должно получиться верное равенство.
В паре чисел на первом месте стоит х, на втором у
(х; у)
Тогда в уравнение подставляем х = –2; у = 4
4∙(–2) + 6∙4 = a
–8 + 24 = а
16 = а
4x + 6y = 16
при а = 16 пара чисел (–2; 4) является решением уравнения.
2) ax – 5y = 8
Выполним то же самое, как и в предыдущем примере.
Так как пара чисел (–2; 4) является решением, то, подставив в уравнение
–2 и 4, должно получиться верное равенство.
a∙(–2) – 5∙4 = 8
–2а – 20 = 8
–2а = 8 + 20
2а = –28
а = –14
–14x – 5y = 8
1) 4x + 6y = a
Так как пара чисел (–2; 4) является решением, то, подставив в уравнение числа –2 и 4, должно получиться верное равенство.
В паре чисел на первом месте стоит х, на втором у
(х; у)
Тогда в уравнение подставляем х = –2; у = 4
4∙(–2) + 6∙4 = a
–8 + 24 = а
16 = а
4x + 6y = 16
при а = 16 пара чисел (–2; 4) является решением уравнения.
2) ax – 5y = 8
Выполним то же самое, как и в предыдущем примере.
Так как пара чисел (–2; 4) является решением, то, подставив в уравнение
–2 и 4, должно получиться верное равенство.
Тогда в уравнение подставляем х = –2; у = 4
a∙(–2) – 5∙4 = 8
–2а – 20 = 8
–2а = 8 + 20
2а = –28
а = –14
–14x – 5y = 8
при а = –14 пара чисел (–2; 4) является решением.5^(x-2) = 5^0 2^(x² -3x +8) = 2^6
x-2 = 0 x² -3x +8 = 6
x = 2 x² -3x +2 = 0
2) 3·4^x =48 x = 1 и х = 2
4^x = 16 6)7^(2x-8)·7^(x+7) = 0
4^x = 4² нет решений
x=2 7)(0,2)^x ≤ 25·5√5
3)3^x=27·3√9 5^-x ≤ 5²·5·5^1/2
3^x = 3³·3·3 5^-x ≤5^3,5
3^x = 3^5 -x ≤ 3,5
x = 5 x ≥ -3,5
4)3^x + 3^(x +1) = 4 8)(1/2)^-x + 2^(3 +x) ≤9
3^x(1 +3) = 4 2^x +2^(3 +x) ≤ 9
3^x·4 = 4 2^x(1 +2^3) ≤ 9 | :9
3^x = 1 2^x ≤ 1
x = 0 2^x ≤2^0
x≤ 0