5. а) рассчитайте значение , с которым числовая последовательность : является арифметической прогрессией b) решите уравнение с) рассчитайте значение , с которым числовая последовательность: является арифметической прогрессией
Решение: Обозначим скорость первого автомобилиста за (х) км/час, а полный путь автомобилиста за единицу (1) пути, тогда время в пути первого автомобилиста составило: 1/х (час) Второй автомобилист проехал первую половину пути за (1/2:55) часа, вторую половину пути второй автомобилист двигался со скоростью (х+6) км/час и проехал вторую половину пути за {1/2:(х+6)} часа А так как автомобилисты приехали в город В одновременно, то есть потратили одинаковое количество времени в пути, составим уравнение: 1/х=(1/2:55)+{1/2:(х+6)} 1/х=1/110+1/(2х+12) 110*(2х+12)=х*(2х+12)*1+х*110*1 220х+1320=2x^2+12x+110x 2x^2+12x+110x-220x-1320=0 2x^2-98x-1320=0 x1,2=(98+-D)/2*2 D=√(9604-4*2*-1320)=√(9604+10560)=√20164=142 х1,2=(98+-142)/4 х1=(98+142)/4=240/4=60 (км/час) - скорость первого автомобилиста х2=(98-142)/4=-44/4=11 - не соответствует условию задачи
ответ: Скорость первого автомобилиста равна 60 км/час
z = x*y
1. Найдем частные производные.
2. Решим систему уравнений.
y = 0
x = 0
Получим:
а) Из первого уравнения выражаем x и подставляем во второе уравнение:
x = 0
y = 0
Откуда y = 0
Данные значения y подставляем в выражение для x. Получаем: x = 0
Количество критических точек равно 1.
M1(0;0)
3. Найдем частные производные второго порядка.
4. Вычислим значение этих частных производных второго порядка в критических точках M(x0;y0).
Вычисляем значения для точки M1(0;0)
AC - B2 = -1 < 0, то глобального экстремума нет.
Вывод: Глобального экстремума нет.
Обозначим скорость первого автомобилиста за (х) км/час, а полный путь автомобилиста за единицу (1) пути, тогда время в пути первого автомобилиста составило:
1/х (час)
Второй автомобилист проехал первую половину пути за (1/2:55) часа,
вторую половину пути второй автомобилист двигался со скоростью (х+6) км/час и проехал вторую половину пути за {1/2:(х+6)} часа
А так как автомобилисты приехали в город В одновременно, то есть потратили одинаковое количество времени в пути, составим уравнение:
1/х=(1/2:55)+{1/2:(х+6)}
1/х=1/110+1/(2х+12)
110*(2х+12)=х*(2х+12)*1+х*110*1
220х+1320=2x^2+12x+110x
2x^2+12x+110x-220x-1320=0
2x^2-98x-1320=0
x1,2=(98+-D)/2*2
D=√(9604-4*2*-1320)=√(9604+10560)=√20164=142
х1,2=(98+-142)/4
х1=(98+142)/4=240/4=60 (км/час) - скорость первого автомобилиста
х2=(98-142)/4=-44/4=11 - не соответствует условию задачи
ответ: Скорость первого автомобилиста равна 60 км/час