5.монету подбрасывали 8 раз. а) сколько получиться различных последовательностей, состоящих из «орлов» и «решек: в)какова вероятность получения последовательности из 3 «орлов» и 5 ирешел?
Из первого уравнения вырим Х: Х=(-4-y-z)/3 Подставим Х который выразил из первого уравнение во второе и после этого выразим У: -4-y-z+5y+6z=36. 4y+5z=40. y=(40-5z)/4 Теперь выраженый Х и У подставим в трерье уравнение и найдем z: (-4-(40-5z)/4-z)/3-(40-5z)-2z=-19. -4/3-10/3+5z/12-z/3-40+5z-2z=-19. 5z/12-z/3+5z-2z=-19+4/3+10/3+40. 35z/12=77/3. Z=77×12/(3×35). Z=8,8 Теперь известный z подставим в уравнение где выражен У: У=(40-5×8,8)/4=-1 Теперь известный У и Z подставим в первое уравнение где выражен Х: х=(-4+1-8.8)/3=-3,933~-4 ответ х=-4, у=-1, z=8,8
=1/5*6^1024-1/5[(6^512+1)(6^256+1)(6^128+1)(6^64+1)(6^32+1)(6^16+1)(6^8+1)(6^4+1)(6^4-1)]=1/5*6^1024-1/5[(6^512+1)(6^256+1)(6^128+1)(6^64+1)(6^32+1)(6^16+1)(6^8+1)(6^8-1)]=1/5*6^1024-1/5[(6^512+1)(6^256+1)(6^128+1)(6^64+1)(6^32+1)(6^16+1)(6^16-1)=1/5*6^1024-1/5[(6^512+1)(6^256+1)(6^128+1)(6^64+1)(6^32+1)(6^32-1)]=1/5*6^1024-1/5[(6^512+1)(6^256+1)(6^128+1)(6^64+1)(6^64-1)]=1/5*6^1024-1/5[(6^512+1)(6^256+1)(6^128+1)(6^128-1)]=1/5*6^1024-1/5[(6^512+1)(6^256+1)(6^256-1)]=1/5*6^1024-1/5[(6^512+1)(6^512-1)]=1/5*6^1024-1/5(6^1024-1)=1/5*6^1024-1/5*6^1024+1/5=0,2