Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение
2)
А значит, если взять (*), . И правда:
(*) Очевидно, что для любого допустимого значения выражение определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)
А это и означает, что предел данной последовательности равен 0
4)
А значит, если взять (**), . И правда:
(**) Очевидно, что для любого допустимого значения выражение определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)
А это и означает, что предел данной последовательности равен 0
___________________________
2) a=1. Тогда
4)
___________________________
Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x.
По определению,
Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение
2)
А значит, если взять (*), . И правда:
(*) Очевидно, что для любого допустимого значения выражение определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)
А это и означает, что предел данной последовательности равен 0
4)
А значит, если взять (**), . И правда:
(**) Очевидно, что для любого допустимого значения выражение определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)
А это и означает, что предел данной последовательности равен 0
___________________________
2) a=1. Тогда
4)
___________________________
Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x.
= (4b+a)(3a²b² + 4b- a)
2) 49c² -14c+1 -21ac+3a = (49c²-14c+1) -3a(7c - 1) = (7c - 1)² - 3a(7c - 1) =
=(7c-1)(7c - 1 - 3a)
3)ax²+ay²+x^4+2x²y²+y^4 = a(x²+y²)+(x^4+2x²y²+y^4) = a(x²+y²) +(x²+y²)²=
= (x²+y²) (a +x²+y²)
4) 27c³-d³+9c²+3cd+d² = [(3c)³-d³]+ (9c²+3cd+d²) =
=[(3c - d)(9c²+3cd+d²)] + (9c²+3cd+d²) = (9c²+3cd+d²) (3c-d+1)
5) b³-2b²-2b+1 =(b³ + 1) - 2b( b+1) = (b+1)(b² -b+1) - 2b(b+1) =
= (b+1)(b² -b+1-2b) = (b+1)(b² -3b+1)