Рационáльное числó (от лат. ratio «отношение, деление, дробь») — число, которое можно представить в виде обыкновенной дроби {\displaystyle {\frac {m}{n}}}{\frac {m}{n}}, где {\displaystyle m,n}m,n — целые числа, {\displaystyle n\neq 0}n\neq 0[1]. К примеру {\displaystyle {\frac {2}{3}}}{\frac {2}{3}}, где {\displaystyle m=2}{\displaystyle m=2}, а {\displaystyle n=3}n=3. Понятие дроби возникло несколько тысяч лет назад, когда, сталкиваясь с необходимостью измерять некоторые величины (длину, вес, площадь и т. п.), люди поняли, что не удаётся обойтись целыми числами и необходимо ввести понятие доли: половины, трети и т. п. Дробями и операциями над ними пользовались, например, шумеры, древние египтяне и греки.
6х-18=12
6х=30
х=5
2. 14=7(х+2)
14=7х+14
7х=0
х=0
3. 12х+4=3(4х-2)
12х+4=12х-6
10 ≠ 0
нет решения
4. 3х +(2х-1) =10
3x + 2x-1=10
5x=9
x= 9/5
x= 1 4/5
х= 1,8
5. (3х-2) - (х-1)=10
3x-2-x+1=10
2х=11
x= 11/2
x= 5,5
6. 2(x-1)-4=6(x+2)
2x-2-4=6x+12
-4x=18
x= -18/4
x= -4,5
7. 6x-3(x-1)=4+5x
6x-3x+3=4+5x
-2x=1
x= -1/2
x= -0,5
8. 5x+18=7x+6(3x-7)
5x+18= 7x+18x-42
42+18=7x+18x-5x
60=20x
x= 20/60
х= 1/3
9. 12+4(х-3)-2х=(5-3х)+9
12+4х-12-2х= 5-3х+9
2х=14-3х
5х=14
х=14/5
х=2,8
10. 3х-7(3х-4)=5(2х-7)
3х-21х +28= 10х-35
28+35=10х+21х-3х
63= 28х
х= 28/63
х= 4/9
Рационáльное числó (от лат. ratio «отношение, деление, дробь») — число, которое можно представить в виде обыкновенной дроби {\displaystyle {\frac {m}{n}}}{\frac {m}{n}}, где {\displaystyle m,n}m,n — целые числа, {\displaystyle n\neq 0}n\neq 0[1]. К примеру {\displaystyle {\frac {2}{3}}}{\frac {2}{3}}, где {\displaystyle m=2}{\displaystyle m=2}, а {\displaystyle n=3}n=3. Понятие дроби возникло несколько тысяч лет назад, когда, сталкиваясь с необходимостью измерять некоторые величины (длину, вес, площадь и т. п.), люди поняли, что не удаётся обойтись целыми числами и необходимо ввести понятие доли: половины, трети и т. п. Дробями и операциями над ними пользовались, например, шумеры, древние египтяне и греки.