5) Представьте в стандартном виде число: 1) 675 000 000 2) 0,00281 3) 403,44 4) 0,00000356 6) Запишите в стандартном виде число: 1) 345,1 · 2) 0,234 · 7) Выразите, записав результат в стандартном виде: 1) 3,8 · т в граммах, 2) 2,85· см в к
1. а) 0,255=255/1000=17*3*5/(5^3*2^3=(17*3/2)/(5^2*2^2). Значит √0,255=(√(51/2))/10. Т.к. 51/2 несократимая дробь и числитель и знаменатель не являются полными квадратами, то число иррационально б) пусть х=5,4444... Тогда 10х=54,444.. Тогда 10х-х=9х=54-5=49, значит х=49/9, а значит √х=7/3, т.е. число рационально
2. Пусть имеется числовая ось с началом координат О. Проводим перпендикуляр к числовой оси через начало координат О и откладываем на нем точку А так, чтобы ОА=1. На самой числовой оси откладываем отрезок ОB длиной 2 тоже от начала координат. Тогда треугольник AOB прямоугольный с прямым углом О, значит по теореме Пифагора его гипотенуза AB=√(1²+2²)=√5. На числовой оси от начала координат в положитлеьном направлении откладываем отрезок OD длиной АВ. Полученная точка D имеет координату √5.
3. Т.к. √2=1,41, то достаточно взять число, например, 1,45.
5. график функции y=(x+3)² можно получить из графика функции y=x² сдвигом параболы y = x² влево на 3 единицы (вдоль оси ОХ)
6. наибольшее значение функции у=-x³+6x-10 График кубической функции бесконечен по обеим осям координат, поэтому наибольшее значение функции определить невозможно.
б) пусть х=5,4444... Тогда 10х=54,444.. Тогда 10х-х=9х=54-5=49, значит х=49/9, а значит √х=7/3, т.е. число рационально
2. Пусть имеется числовая ось с началом координат О. Проводим перпендикуляр к числовой оси через начало координат О и откладываем на нем точку А так, чтобы ОА=1. На самой числовой оси откладываем отрезок ОB длиной 2 тоже от начала координат. Тогда треугольник AOB прямоугольный с прямым углом О, значит по теореме Пифагора его гипотенуза AB=√(1²+2²)=√5. На числовой оси от начала координат в положитлеьном направлении откладываем отрезок OD длиной АВ. Полученная точка D имеет координату √5.
3. Т.к. √2=1,41, то достаточно взять число, например, 1,45.
(x - x1)(x - x2) = (x - 2,5)(x + 3) = x² +3x - 2,5x - 7,5 = x² + 0,5x - 7,5
Квадратный трёхчлен x² + 0,5x - 7,5
2. сократите дробь
3. представьте трехчлен 4х²-8х+3 выделив квадрат двучлена
4x² - 8x + 3 = ((2x)² - 2*(2x)*2 + 4) - 4 + 3 = (2x - 2)² - 1
4x² - 8x + 3 = (2x - 2)² - 1
4. выделите полный квадрат в трехчлене -х²+14х+48
-х²+14х+48 = -(x² - 14x - 48) = -((x² - 2*x*7 + 49) - 49 - 48)=
= -((x - 7)² - 97) = -(x - 7)² + 97
-x² + 14x + 48 = -(x - 7)² + 97
5. график функции y=(x+3)² можно получить из графика функции y=x²
сдвигом параболы y = x² влево на 3 единицы (вдоль оси ОХ)
6. наибольшее значение функции у=-x³+6x-10
График кубической функции бесконечен по обеим осям координат, поэтому наибольшее значение функции определить невозможно.