Ну, смотрите. Оба они лжецами быть не могут - иначе бы сказанные ими числа отличались на 10 или не отличались бы вовсе. Теперь надо выяснить кто из них кто. Допустим, первый студент - правдолюб. Тогда лжецов получится 504, а правдолюбов 506 (включая его самого). Тогда второй студент будет лжецом, а значит данные должны отличаться на 5 человек - должно быть 500 лжецов не считая его и 501 правдолюб (или же 509 лжецов не считая его и 510 правдолюбов). Как видно, цифры не совпадают с условиями задачи. А это значит, что предположение не верно и первый студент - лжец, а второй - правдолюб. Проверим: Если первый студент лжец, то по его словам лжецов здесь 505, как и правдолюбов. Значит на самом деле число лжецов 500 или 510, и правдолюбов 500 или 510. Второй студент - правдолюб, он говорит, что в аудитории 500 лжецов и 500 правдолюбов (считая его). Совпало. ответ: первый студент - лжец, а второй правдолюб.
Нанесем на числовую ось корни обращающие выражение в 0 это кор из 2 и -кор из 3
оо> -к из 3 к из 2
+ - + определим знаки выражения на каждом интервале при x> к из 2 например x=10 выражение имеет знак + при -к из3 <x< к из 2 например х=0 выражение имеет знак - при х<-к из 3 например х=-10 обе скобки отрицательны а их произведение>0 таким образом -к из 3 < х< к из 2 или х принадлежит интервалу (-бесконечность, -к из 3) объединяется с интервалом (к из 2, +бесконечность)
Теперь надо выяснить кто из них кто.
Допустим, первый студент - правдолюб. Тогда лжецов получится 504, а правдолюбов 506 (включая его самого). Тогда второй студент будет лжецом, а значит данные должны отличаться на 5 человек - должно быть 500 лжецов не считая его и 501 правдолюб (или же 509 лжецов не считая его и 510 правдолюбов). Как видно, цифры не совпадают с условиями задачи. А это значит, что предположение не верно и первый студент - лжец, а второй - правдолюб.
Проверим:
Если первый студент лжец, то по его словам лжецов здесь 505, как и правдолюбов. Значит на самом деле число лжецов 500 или 510, и правдолюбов 500 или 510.
Второй студент - правдолюб, он говорит, что в аудитории 500 лжецов и 500 правдолюбов (считая его). Совпало.
ответ: первый студент - лжец, а второй правдолюб.
оо>
-к из 3 к из 2
+ - +
определим знаки выражения на каждом интервале
при x> к из 2 например x=10 выражение имеет знак +
при -к из3 <x< к из 2 например х=0 выражение имеет знак -
при х<-к из 3 например х=-10 обе скобки отрицательны а их произведение>0
таким образом -к из 3 < х< к из 2
или х принадлежит интервалу (-бесконечность, -к из 3) объединяется с интервалом (к из 2, +бесконечность)