1. Наибольшее и наименьшее значения заданной функции на заданном отрезке без производной : y=√(1+cos2x) , [-п/2, 0] , Косинус имеет максимум при х = 0, равный 1. Поэтому наибольшее значение заданная функция имеет при х = 0, у = √2. Наименьшее значение заданной функции соответствует х = -π/2, тогда подкоренное выражение равно 0 и вся функция равна 0.
2.Наименьшее и наибольшее значения заданной функции на заданном отрезке : y=2cosx+x , [-п/2, п/2]. Функция представляет сумму косинуса и прямой линии. Максимум функции при х = π/6 равен √3 + (π/6). Минимум функции при х = -π/2 равен -π/2.
y=√(1+cos2x) , [-п/2, 0] ,
Косинус имеет максимум при х = 0, равный 1.
Поэтому наибольшее значение заданная функция имеет при х = 0, у = √2.
Наименьшее значение заданной функции соответствует х = -π/2, тогда подкоренное выражение равно 0 и вся функция равна 0.
2.Наименьшее и наибольшее значения заданной функции на заданном отрезке :
y=2cosx+x , [-п/2, п/2].
Функция представляет сумму косинуса и прямой линии.
Максимум функции при х = π/6 равен √3 + (π/6).
Минимум функции при х = -π/2 равен -π/2.
2a) x² - 100x - 101 = 0
(- 1)² - 100 * (- 1) - 101 = 0
1 + 100 - 101 = 0
101 - 101 = 0
0 = 0 - верно
Число - 1 является корнем уравнения x² - 100x - 101 = 0
x₁ * x₂ = - 101
- 1 * x₂ = - 101
x₂ = 101
x² - 100x - 101 = (x + 1)(x - 101)
2б) x² + 6x + 5 = 0
(- 1)² + 6 * ( - 1) + 5 = 0
1 - 6 + 5 = 0
- 5 + 5 = 0
0 = 0 - верно
Число - 1 является корнем уравнения x² + 6x + 5 = 0
x₁ * x₂ = 5
- 1 * x₂ = 5
x₂ = - 5
x² + 6x + 5 = (x + 1)(x + 5)
2в) 3x² + 5x + 2 = 0
3 * ( - 1)² + 5 * (- 1) + 2 = 0
3 - 5 + 2 = 0
- 2 + 2 = 0 - верно
Число - 1 является корнем уравнения 3x² + 5x + 2 = 0
x₁ * x₂ = 2/3
- 1 * x₂ = 2/3
x₂ = - 2/3
3x² + 5x + 2 = 3(x + 1)(x + 2/3)
3) x² - 12x + 2 = 0
x₁ + x₂ = 12
x₁ * x₂ = 2
x₁³ + x₂³ = (x₁ + x₂) * [(x₁ + x₂)² - 3x₁*x₂] = 12 * (12² - 3 * 2) = 12 * (144 - 6) =
= 12 * 138 = 1656
ответ : 1656