1) ОДЗ: 1≤х≤4 решение - графическое... нужно ведь не корни найти, а количество корней))) одна функция монотонно убывает, другая монотонно возрастает, они если и пересекутся, то всего лишь ОДИН раз. ответ: один корень 2) ОДЗ: х>0; x≠1 (log(5)x)³ + 3(log(5)x)² = -2*log(5)x использована формула перехода к логарифму по новому основанию (log(5)x)³ + 3(log(5)x)² + 2*log(5)x = 0 log(5)x*((log(5)x)² + 3*log(5)x + 2) = 0 1. log(5)x = 0 ---> x=1 ---посторонний корень (вне ОДЗ) в скобках --квадратное уравнение относительно log(5)x по т.Виета корни (-2) и (-1) log(5)x = -2 ---> x₁ = 0.04 log(5)x = -1 ---> x₂ = 0.2
решение - графическое...
нужно ведь не корни найти, а количество корней)))
одна функция монотонно убывает, другая монотонно возрастает,
они если и пересекутся, то всего лишь ОДИН раз.
ответ: один корень
2) ОДЗ: х>0; x≠1
(log(5)x)³ + 3(log(5)x)² = -2*log(5)x
использована формула перехода к логарифму по новому основанию
(log(5)x)³ + 3(log(5)x)² + 2*log(5)x = 0
log(5)x*((log(5)x)² + 3*log(5)x + 2) = 0
1. log(5)x = 0 ---> x=1 ---посторонний корень (вне ОДЗ)
в скобках --квадратное уравнение относительно log(5)x
по т.Виета корни (-2) и (-1)
log(5)x = -2 ---> x₁ = 0.04
log(5)x = -1 ---> x₂ = 0.2
28 или 35
Объяснение:
Соединим линиями мальчиков и девочек, которые дружат друг с другом.
Количество линий выходящих от мальчиков равно 2м, от девочек 5д
Так как это одни и те же линии, то 2м=5д.
Минимальное количество учеников 25, максимальное 2*19=38
Количество девочек связано с количеством мальчиков соотношением д=2/5м
Тогда количество учеников а классе равно (м+д)=2/5м+м=7/5м
25<=7/5м<=38
25*5/7<=м<=38*5/7
18<=м<=27
Из равенства 2м=5д, следует, что количество мальчиков делится на 5
Значит м может принимать значения 20 и 25, в этом случае количество девочек 8 и 10. Тогда возможное количество учеников в классе 28 и 35.