В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
danilsalnikov
danilsalnikov
05.07.2020 02:55 •  Алгебра

5. знайдіть діагональ квадрата ABCD,якщо
A 1-2; 3), B (0;5), C(2,3), D(0; 1).​

Показать ответ
Ответ:
eledzheev
eledzheev
24.09.2020 00:41

ответ:\left[-5;-\dfrac{7+2\sqrt{7}}{3}\right)\cup\left(-\dfrac{7+2\sqrt{7}}{3};-\dfrac{7}{2}\right)\cup\left(-1;-\dfrac{1}{2}\right]\cup\left\{\dfrac{-11+4\sqrt{7}}{9};\dfrac{7-2\sqrt{7}}{3};\dfrac{7+2\sqrt{7}}{3}\right\}Объяснение:

Исходная дробь равносильна следующей системе (числитель равен нулю, знаменатель не равен нулю + ОДЗ):

\begin{cases}((|x|+|y|)^2-8(|x|+|y|)+15)(x^2+y^2-16)=0,\\ \sqrt{2x+y-1}\neq 0,\\ 2x+y-1\geq 0 \end{cases}

В первом уравнении произведение равно нулю, когда хотя бы один из множителей равен нулю. Второе неравенство равносильно тому, что подкоренное выражение не равно нулю. Значит, вместе второе и третье образуют неравенство 2x + y - 1 > 0 ⇔ y > -2x + 1. Вернёмся к первому уравнению:

\displaystyle\left [ {{(|x|+|y|)^2-8(|x|+|y|)+15=0,} \atop {x^2+y^2-16=0}} \right.

В первом уравнении сделаем замену |x| + |y| = t.

t^2-8t+15=0

По теореме Виета \displaystyle\left \{ {{t_1+t_2=8,} \atop {t_1t_2=15}} \right. \Rightarrow t_1=3,t_2=5

Получаем \left[\begin{gathered}|x|+|y|=3,\\|x|+|y|=5,\\ x^2+y^2=16\end{gathered}\right.

Третье уравнение — уравнение окружности с центром (0; 0) и радиусом 4. Первые два уравнения — уравнения квадратов с центром в точке (0; 0), наклонённых на 45° и диагоналями 6 и 10: действительно, если раскрыть модуль y, а всё без y перенести в правую сторону, то при y ≥ 0 y = -|x| + 3, при y < 0 y = |x| - 3. Аналогично с |x| + |y| = 5.

Учтём ограничение y > -2x + 1: нам подохдят все y, что выше прямой -2x + 1. Всё вместе это выглядит, как на первой картинке. Теперь нужно обрезать всё, что не попадает в синюю область (см. вторую картинку).

Для выполнения второго задания вычислим точки пересечения квадратов и окружности с прямой y = -2x + 1, а также точки пересечения окружности и большого квадрата.

|x|+|1-2x|=3

При x < 0: -x+1-2x=3\\-3x=2\\x=-\dfrac{2}{3}, y=-2\cdot\left(-\dfrac{2}{3}\right)+1=\dfrac{7}{3}

При 0 ≤ x < 0,5: x+1-2x=3\\x=-2 — не подходит

При x ≥ 0,5: x+2x-1=3\\3x=4\\x=\dfrac{4}{3},y=-2\cdot \dfrac{4}{3}+1=-\dfrac{5}{3}

|x|+|1-2x|=5

При x < 0: -x+1-2x=5\\-3x=4\\x=-\dfrac{4}{3}, y=-2\cdot\left(-\dfrac{4}{3}\right)+1=\dfrac{11}{3}

При 0 ≤ x < 0,5: x+1-2x=5\\x=-4 — не подходит

При x ≥ 0,5: x+2x-1=5\\3x=6\\x=2,y=-2\cdot 2+1=-3

x^2+(1-2x)^2=16\\x^2+1-4x+4x^2-16=0\\5x^2-4x-15=0\\D_{/4}=2^2+5\cdot 15=79\\x_1=\dfrac{2+\sqrt{79}}{5},y_1=-2\cdot\dfrac{2+\sqrt{79}}{5}+1=\dfrac{1-2\sqrt{79}}{5}\\x_2=\dfrac{2-\sqrt{79}}{5},y_2=-2\cdot\dfrac{2-\sqrt{79}}{5}+1=\dfrac{1+2\sqrt{79}}{5}

\displaystyle\left \{ {{|x|+|y|=5,} \atop {x^2+y^2=16}} \right.\left \{ {{|x|+\sqrt{16-x^2}=5,} \atop {|y|=\sqrt{16-x^2}}} \right.

Решим первое уравнение:

\sqrt{16-x^2}=5-|x|\\16-x^2=25-10|x|+x^2\\2x^2-10|x|+9=0\\0\leq x\leq 5: 2x^2-10x+9=0\\D_{/4}=5^2-2\cdot 9=7\\x_1=\dfrac{5-\sqrt{7}}{2},y_1=\pm\sqrt{16-\left(\dfrac{5-\sqrt{7}}{2}\right)^2}=\pm\sqrt{\dfrac{64-25+10\sqrt{7}-7}{4}}=\\=\pm\dfrac{\sqrt{25+10\sqrt{7}+7}}{2}=\pm\dfrac{5+\sqrt{7}}{2}\\x_2=\dfrac{5+\sqrt{7}}{2},y_2=\pm\dfrac{5-\sqrt{7}}{2}

-5\leq x

Прямая y = px - 1 — прямая, проходящая через точку (0; -1). Действительно, если подставить x = 0, вне зависимости от параметра p при данном x y = -1. p регулирует наклон прямой. Будем вращать прямую около точки (0; -1) и отмечать промежутки (красным), где прямая "начинает" и "заканчивает" иметь две общие точки (см. третью картинку).

На рисунке отмечены все промежутки и частные случаи, когда прямая имеет две общие точки. Выразим p через x и y:

y+1=px\\p=\dfrac{y+1}{x}

Для \left(-\dfrac{2}{3};\dfrac{7}{3}\right)\ p=\dfrac{\frac{7}{3}+1}{-\frac{2}{3}}=-5

Для \left(-\dfrac{5-\sqrt{7}}{2};\dfrac{5+\sqrt{7}}{2}\right)\ p=\dfrac{\frac{5+\sqrt{7}}{2}+1}{-\frac{5-\sqrt{7}}{2}}=-\dfrac{7+2\sqrt{7}}{3}

Для \left(-\dfrac{4}{3};\dfrac{11}{3}\right)\ p=\dfrac{\frac{11}{3}+1}{-\frac{4}{3}}=-\dfrac{7}{2}

Для \left(2;-3\right)\ p=\dfrac{-3+1}{2}=-1

Для \left(\dfrac{4}{3};-\dfrac{5}{3}\right)\ p=\dfrac{-\frac{5}{3}+1}{\frac{4}{3}}=-\dfrac{1}{2}

Для \left(\dfrac{5+\sqrt{7}}{2};-\dfrac{5-\sqrt{7}}{2}\right)\ p=\dfrac{-\frac{5-\sqrt{7}}{2}+1}{\frac{5+\sqrt{7}}{2}}=\dfrac{-11+4\sqrt{7}}{9}

Для \left(\dfrac{5+\sqrt{7}}{2};\dfrac{5-\sqrt{7}}{2}\right)\ p=\dfrac{\frac{5-\sqrt{7}}{2}+1}{\frac{5+\sqrt{7}}{2}}=\dfrac{7-2\sqrt{7}}{3}

Для \left(\dfrac{5-\sqrt{7}}{2};\dfrac{5+\sqrt{7}}{2}\right)\ p=\dfrac{\frac{5+\sqrt{7}}{2}+1}{\frac{5-\sqrt{7}}{2}}=\dfrac{7+2\sqrt{7}}{3}

Итого

p\in\left[-5;-\dfrac{7+2\sqrt{7}}{3}\right)\cup\left(-\dfrac{7+2\sqrt{7}}{3};-\dfrac{7}{2}\right)\cup\left(-1;-\dfrac{1}{2}\right]\cup\\\cup\left\{\dfrac{-11+4\sqrt{7}}{9};\dfrac{7-2\sqrt{7}}{3};\dfrac{7+2\sqrt{7}}{3}\right\}


Решите подробно и с вычислениями : не просто график и второе задание
Решите подробно и с вычислениями : не просто график и второе задание
Решите подробно и с вычислениями : не просто график и второе задание
0,0(0 оценок)
Ответ:
DariaDosh
DariaDosh
08.11.2022 05:22
1) (x² - 4)(2x - 1) < 0
Сделаем преобразование по формуле разности квадратов. Получим
(x - 2)(x + 2)(2x - 1) < 0
Сначала найдем корни уравнения
(x - 2)(x + 2)(2x - 1) = 0
x - 2 = 0; x + 2 = 0; 2x - 1 = 0
x = 2;      x = -2;      x = 0,5
Получаем промежутки (- бесконечность; -2), (-2; 0,5), (0,5; 2), (2; + бесконечность)
Возвращаемся к неравенству и смотрим на каких промежутках неравенство верно. Для этого берем из каждого промежутка значение и подставляем в неравенство. Получим, что неравенство выполняется только на промежутках (- бесконечность; -2), (0,5; 2)
ответ: x∈(- бесконечность; -2) и x∈(0,5; 2).

2) (9 - x²)(6 - 5x) ≥ 0
Сделаем преобразование по формуле разности квадратов. Получим
(3 - x)(3 + x)(6 - 5x) ≥ 0
Сначала найдем корни уравнения
(3 - x)(3 + x)(6 - 5x) = 0
3 - x = 0; 3 + x = 0; 6 - 5x = 0
x = 3;      x = -3;      x = 1,2
Получаем промежутки (- бесконечность; -3), (-3; 1,2), (1,2; 3), (3; + бесконечность)
Возвращаемся к неравенству и смотрим на каких промежутках неравенство верно. Для этого берем из каждого промежутка значение и подставляем в неравенство. Получим, что неравенство выполняется только на промежутках [-3; 1,2], [3; + бесконечность). Так как неравенство нестрогое, то скобки ставятся квадратные, но возле знака бесконечность скобки всегда круглые ставятся.
ответ: x∈[-3; 1,2] и x∈[3; + бесконечность).

3) (x - 1)(x + 2)(3x - 1) > 0
Сначала найдем корни уравнения
(x - 1)(x + 2)(3x - 1) = 0
x - 1 = 0; x + 2 = 0; 3x - 1 = 0
x = 1;      x = -2;      x = 1/3
Получаем промежутки (- бесконечность; -2), (-2; 1/3), (1/3; 1), (1; + бесконечность)
Возвращаемся к неравенству и смотрим на каких промежутках неравенство верно. Для этого берем из каждого промежутка значение и подставляем в неравенство. Получим, что неравенство выполняется только на промежутках (-2; 1/3), (1; + бесконечность).
ответ: x∈(-2; 1/3) и x∈(1; + бесконечность).

4) (2x - 5)(x + 0,5)(3x + 7) ≤ 0
Сначала найдем корни уравнения
2x - 5 = 0; x + 0,5 = 0; 3x + 7 = 0
x = 2,5;      x = -0,5;    x = -7/3 = -2(целых)1/3
Получаем промежутки (- бесконечность; -2(целых)1/3], [-2(целых)1/3; -0,5], [-0,5; 2,5], [2,5; + бесконечность).
Возвращаемся к неравенству и смотрим на каких промежутках неравенство верно. Для этого берем из каждого промежутка значение и подставляем в неравенство. Получим, что неравенство выполняется только на промежутках (- бесконечность; -2(целых)1/3], [-0,5; 2,5]. Так как неравенство нестрогое, то скобки ставятся квадратные, но возле знака бесконечность скобки всегда круглые ставятся.
ответ: x∈(- бесконечность; -2(целых)1/3] и x∈[-0,5; 2,5].
0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота