Так как log4(x)=log2(x)/log2(4)=1/2*log2(x), а 1/2*log2(x)=log2(√x), то данное уравнение можно записать в виде: log2(x-2)=log2(√x). Оно приводится к уравнению x-2=√x (*), но так как выражения x-2 и √x находятся под знаком логарифма, то к этому уравнению добавляются условия:
x-2>0
√x>0
Решая эту систему неравенств, находим √x>√2 (**) и переходим к решению уравнения (*). Возводя обе его части в квадрат и приводя подобные члены, приходим к квадратному уравнению x²-5*x+4=0, которое имеет решения x1=4, x2=1. С учётом условия (**) окончательно находим x=4.
Для решения применим правило нахождения геометрической вероятности: Если фигура F₁ содержится в фигуре F, тогда вероятность попадания в фигуру F₁, при условии попадания в фигуру F равна отношению площадей: Р=S(F₁):S(F)
Фигура первая - большой круг с радиусом 2 см, площадь которого равна πR² = π*2²=4π (см²)
Фигура вторая - маленький круг с радиусом 1 см, площадь которого равна πr² =π*1² =π (см²)
Событие А - "точка В попадет в маленький круг радиуса 1 см, находящийся внутри большого круга радиусом 2 см".
По правилу нахождения геометрической вероятности получаем вероятность попадания точки В в маленький круг радиуса 1 см:
Р(А) = π:4π = 1/4=0,25
Вероятность того, что точка В не попадёт в маленький круг радиуса 1 см, находящийся внутри большого круга радиуса 2 см, равна вероятности противоположного события событию А, т.е.
Р = 1-Р(А) = 1-0,25 = 0,75
*** Для решения использованы формула площади круга с радиусом R:
ответ: x=4.
Объяснение:
Так как log4(x)=log2(x)/log2(4)=1/2*log2(x), а 1/2*log2(x)=log2(√x), то данное уравнение можно записать в виде: log2(x-2)=log2(√x). Оно приводится к уравнению x-2=√x (*), но так как выражения x-2 и √x находятся под знаком логарифма, то к этому уравнению добавляются условия:
x-2>0
√x>0
Решая эту систему неравенств, находим √x>√2 (**) и переходим к решению уравнения (*). Возводя обе его части в квадрат и приводя подобные члены, приходим к квадратному уравнению x²-5*x+4=0, которое имеет решения x1=4, x2=1. С учётом условия (**) окончательно находим x=4.
0,75
Объяснение:
Для решения применим правило нахождения геометрической вероятности: Если фигура F₁ содержится в фигуре F, тогда вероятность попадания в фигуру F₁, при условии попадания в фигуру F равна отношению площадей: Р=S(F₁):S(F)
Фигура первая - большой круг с радиусом 2 см, площадь которого равна πR² = π*2²=4π (см²)
Фигура вторая - маленький круг с радиусом 1 см, площадь которого равна πr² =π*1² =π (см²)
Событие А - "точка В попадет в маленький круг радиуса 1 см, находящийся внутри большого круга радиусом 2 см".
По правилу нахождения геометрической вероятности получаем вероятность попадания точки В в маленький круг радиуса 1 см:
Р(А) = π:4π = 1/4=0,25
Вероятность того, что точка В не попадёт в маленький круг радиуса 1 см, находящийся внутри большого круга радиуса 2 см, равна вероятности противоположного события событию А, т.е.
Р = 1-Р(А) = 1-0,25 = 0,75
*** Для решения использованы формула площади круга с радиусом R:
Sкр. = πR²