1. q = -2.
2. 1;1/2;1/4 q = 1/2
1;3;9q = 3
2/3;1/2;3/8q = 3/4
√2; 1;√2/2q = 1/√2
3. заданная формула возможно неточно переписана или последовательность не геометрическая.
3*2n - 3 умножить на 2n или 3 возвести в степень 2n
4. q = 0,5
5. S = -0.25
6. b6 = 243.
7. 3-n,3-2n,3-3n,3-4n, 3n,3n+1,3n+2,3n+3 - єти последовательности не являются геометрическими прогрессиями
Объяснение:
1. Последовательность геометрическая т.к. а2 = а1 * q, а3 = а2 * q, где
q - одно и тоже число (знаменатель данной геометрической прогрессии)
q = а2 / а1 = -6 / 3 = -2.
4. Из формулы нахождения n-го члена геометрической прогрессии
q = а2 / а1 = 10/20 = 0,5.
5. q = а2 / а1 = -2/4 = -0,5
а5 = 4 * (-0,5)^4 = 0.25
a4 = 4 * (-0.5) ^3 = -0.5
6. b6 = b1 * q^5 = 243.
1)
a)
Это линейная функция и она возрастает при всех значениях х , так как угловой коэффициент положителен: k =3>0
б)
k=-2<0 . Значит линейная функция f(x)=1,5-2x убывает на всей числовой прямой.
в)
На промежутке (-∞ ; 3) производная отрицательна, значит функция убывает на (-∞; 3]
На промежутке (3; +∞) производная положительна , значит функция возрастает на [3; +∞).
г)
На промежутке (-∞ ; 2) производная отрицательна, значит функция убывает на (-∞; 2]
На промежутке (2; +∞) производная положительна , значит функция возрастает на [2; +∞).
2)
На промежутке (-1;+∞) производная отрицательна, значит функция убывает на [-1; +∞).
На промежутке (-∞; -1) производная положительна , значит функция возрастает на (-∞; -1].
Если x=-1,x=0 ,x=1. Продолжение на фото
1. q = -2.
2. 1;1/2;1/4 q = 1/2
1;3;9q = 3
2/3;1/2;3/8q = 3/4
√2; 1;√2/2q = 1/√2
3. заданная формула возможно неточно переписана или последовательность не геометрическая.
3*2n - 3 умножить на 2n или 3 возвести в степень 2n
4. q = 0,5
5. S = -0.25
6. b6 = 243.
7. 3-n,3-2n,3-3n,3-4n, 3n,3n+1,3n+2,3n+3 - єти последовательности не являются геометрическими прогрессиями
Объяснение:
1. Последовательность геометрическая т.к. а2 = а1 * q, а3 = а2 * q, где
q - одно и тоже число (знаменатель данной геометрической прогрессии)
q = а2 / а1 = -6 / 3 = -2.
4. Из формулы нахождения n-го члена геометрической прогрессии
q = а2 / а1 = 10/20 = 0,5.
5. q = а2 / а1 = -2/4 = -0,5
а5 = 4 * (-0,5)^4 = 0.25
a4 = 4 * (-0.5) ^3 = -0.5
6. b6 = b1 * q^5 = 243.
Объяснение:
1)
a)
Это линейная функция и она возрастает при всех значениях х , так как угловой коэффициент положителен: k =3>0
б)
k=-2<0 . Значит линейная функция f(x)=1,5-2x убывает на всей числовой прямой.
в)
На промежутке (-∞ ; 3) производная отрицательна, значит функция убывает на (-∞; 3]
На промежутке (3; +∞) производная положительна , значит функция возрастает на [3; +∞).
г)
На промежутке (-∞ ; 2) производная отрицательна, значит функция убывает на (-∞; 2]
На промежутке (2; +∞) производная положительна , значит функция возрастает на [2; +∞).
2)
a)
На промежутке (-1;+∞) производная отрицательна, значит функция убывает на [-1; +∞).
На промежутке (-∞; -1) производная положительна , значит функция возрастает на (-∞; -1].
в)
На промежутке (-∞ ; 3) производная отрицательна, значит функция убывает на (-∞; 3]
На промежутке (3; +∞) производная положительна , значит функция возрастает на [3; +∞).
г)
Если x=-1,x=0 ,x=1. Продолжение на фото