В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
мая96
мая96
30.09.2021 10:42 •  Алгебра

=54−44+253‾‾‾√5+11.

Найди производную данной функции.

Показать ответ
Ответ:
pichtook1
pichtook1
03.10.2020 03:56

Функция, конечно, интересная, но искать производную или просто нули функции, очень сложно. Будем рассматривать критические точки функции и искать пределы.

1. Найдем область определения функции:

\left\{\begin{matrix} 1-x\geq0\\ x+4 0\\ x^2-4 \neq 0\end{matrix}\right. \Rightarrow \left\{\begin{matrix} x \leq 1\\ x -4\\ x \neq \pm2\end{matrix}\right.\Rightarrow x\in(-4;-2)\cup(-2;1]

Здесь же видно, какие пределы надо считать. Посчитаем предел справа для x=-4 (это всякие -3.9999 и т.д.)

Очевидно, что рассматривать всегда надо одно слагаемое, которое приводит знаменатель в 0.

\displaystyle \lim_{x\to-4+0}\bigg(-\frac{1}{\sqrt{x+4}}\bigg)=\lim_{x\to-4+0}\bigg(-\frac{1}{\sqrt{-4+0+4}}\bigg)=\\=\lim_{x\to-4+0}\bigg(-\frac{1}{+0}\bigg)=-\infty

То есть слева график уходит в минус бесконечность, для области значений делаем выводы.

Теперь дальше, после (-4) следующая интересная точка (-2), рассмотрим предел слева для неё.

\displaystyle \lim_{x\to-2-0}\bigg(\frac{1}{x^2-4}\bigg)=\lim_{x\to-2-0}\bigg(\frac{1}{(-2-0)^2-4}\bigg)=\\=\lim_{x\to-2-0}\bigg(\frac{1}{(-(2+0))^2-4}\bigg)=\lim_{x\to-2-0}\bigg(\frac{1}{(2+0)^2-4}\bigg)=\\=\lim_{x\to-2-0}\bigg(\frac{1}{2^2+2\cdot 2\cdot 0+0^2-4}\bigg)=\lim_{x\to-2-0}\bigg(\frac{1}{+0}\bigg)=+\infty

То есть на интервале (-4;-2) функция уже принимает значения (-\infty; +\infty). Этого уже достаточно, чтобы ответить на вопрос задачи, потому что разрывов внутри интервала нет, а значит, функция обязательно достигнет каждого заявленного значения, ведь на этом интервале она непрерывна.

Но ради интереса посмотрим предел справа

\displaystyle \lim_{x\to-2+0}\bigg(\frac{1}{x^2-4}\bigg)=\lim_{x\to-2+0}\bigg(\frac{1}{(x-2)(x+2)}\bigg)=\\=\lim_{x\to-2+0}\bigg(\frac{1}{(-2+0-2)(-2+0+2)}\bigg)=\lim_{x\to-2+0}\bigg(\frac{1}{(-4+0)(+0)}\bigg)=\\=\lim_{x\to-2+0}\bigg(\frac{1}{(-4)(+0)}\bigg)=\lim_{x\to-2+0}\bigg(\frac{1}{-0}\bigg)=-\infty

То есть при переходе через точку x=-2 функция с положительной бесконечности прыгает на отрицательную, в целом это нормально для гипербол.

И последний предел, который посчитаем, это при x\to1, просто это правый конец области определения.

\displaystyle\lim_{x\to1}\bigg( \sqrt{1-x}-\frac{1}{\sqrt{x+4}}+\frac{1}{x^2-4} \bigg)=\lim_{x\to1}\bigg( \sqrt{1-1}-\frac{1}{\sqrt{1+4}}+\frac{1}{1^2-4} \bigg)=\\=0-\frac{1}{\sqrt{5}}-\frac{1}{3}=-\frac{3+\sqrt{5}}{3\sqrt{5}}=-\frac{3\sqrt{5}+5}{15}

То есть функция на (-4;-2) (имеем в виду -2-0) растет от -\infty до +\infty (необязательно монотонно), затем на (-2;1] (имеем в виду -2+0) растет от -\infty до \displaystyle -\frac{3\sqrt{5}+5}{15}

(также необязательно монотонно).

И разрыв 2-го рода при x=-2

ответ: \boxed{E(y)=(-\infty;+\infty)}


Найди область значений функции: ( с точками )
0,0(0 оценок)
Ответ:
котан6
котан6
28.12.2022 16:15

Объяснение:

1. Для того что бы нам найти значение данного выражения  (4 - y)^2 - y * (y + 1) нам нужно будет подставить известные нам величины такой как  y, который равен  y = - 1/9, и выполнить определенные действия такие как умножения и суммирование.

2. Давайте мы подставим значения y = - 1/9, в наше выражение, тогда получаем:

(4 - y)^2 - y * (y + 1) =  (4 - (- 1/9))^2 - (- 1/9) * ((- 1/9) + 1) =

= (4 + 1/9)^2 - (- 1/9) * (- 1/9 + 1) = (37/9)^2 - (- 1/9) * (8/9) = 1369/81 + 8/81 = 17.

ответ: значение выражения (4 - y)^2 - y * (y + 1)  при   y = - 1/9 будет равно 17.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота