1) угловой коэффициент k=-0,7 2) х=2у+2 2у=х-2 у=х/2-1 Угловой коэфф. к=1/2 3) -5х+3у+16=0 3у=5х-16 у=5х/3-16/3 Угловой коэфф. k=5/3 № 3. 1) (х-3)²+(у-1)²=9 (х-3)²+(у-1)²=3² Графиком будет окружность с радиусом 3 с центром в точке с координатами (3; 1) 2) у=(х-2)²-1 у=х²-4х+4-1 у=х²-4х+3 График функции - парабола, ветви направлены вверх ( а>0) Нули функции х1=1 и х2=3. (Точки пересечения с осью ОХ) При х =0, у=3 - точка пересечения с осью ОУ 3) у=х²-2 График - парабола ветвями вверх. При х=0, у=-2.
С производной построим график функции y=x3+12x2−27x.
1. Введём обозначение f(x)=x3+12x2−27x.
Найдём область определения функции D(f)=(−∞;+∞).
2. Найдем стационарные и критические точки, точки экстремума и промежутки монотонности функции:
f′(x)=(x3+12x2−27x)′=3x2+24x−27.
Внутренние точки области определения функции, в которых производная функции равна нулю, назывём стационарными, а внутренние точки области определения функции, в которых функция непрерывна, но производная не существует, —критическими.
Производная существует всюду в области определения функции, значит, критических точек у функции нет. Стационарные точки найдем из соотношения f′(x)=0:
Критические и стационарные точки делят реальную числовую прямую на интервалы с неизменным знаком производной. Чтобы определить знак производной, достаточно вычислить значение производной функции в какой-либо точке соответственного интервала.
Если производная функции в критической (стационарной) точке:
1) меняет знак с отрицательного на положительный, то это точка минимума;
2) меняет знак с положительного на отрицательный, то это точка максимума;
3) не меняет знак, то в этой точке нет экстремума.
Итак, определим точки экстремума:
При x<−9 имеем положительную производную (на этом промежутке функция возрастает); при −9<x<1 имеем отрицательную производную (на этом промежутке функция убывает). Значит, x=−9 — точка максимума функции. При −9<x<1 имеем отрицательную производную, при
2) х=2у+2
2у=х-2
у=х/2-1 Угловой коэфф. к=1/2
3) -5х+3у+16=0
3у=5х-16
у=5х/3-16/3 Угловой коэфф. k=5/3
№ 3.
1) (х-3)²+(у-1)²=9
(х-3)²+(у-1)²=3² Графиком будет окружность с радиусом 3 с центром в точке с координатами (3; 1)
2) у=(х-2)²-1 у=х²-4х+4-1 у=х²-4х+3
График функции - парабола, ветви направлены вверх ( а>0) Нули функции х1=1 и х2=3. (Точки пересечения с осью ОХ)
При х =0, у=3 - точка пересечения с осью ОУ
3) у=х²-2
График - парабола ветвями вверх. При х=0, у=-2.
<!--c-->
Преобразим заданное уравнение:
x3+12x2−27x=a
С производной построим график функции y=x3+12x2−27x.
1. Введём обозначение f(x)=x3+12x2−27x.
Найдём область определения функции D(f)=(−∞;+∞).
2. Найдем стационарные и критические точки, точки экстремума и промежутки монотонности функции:
f′(x)=(x3+12x2−27x)′=3x2+24x−27.
Внутренние точки области определения функции, в которых производная функции равна нулю, назывём стационарными, а внутренние точки области определения функции, в которых функция непрерывна, но производная не существует, —критическими.
Производная существует всюду в области определения функции, значит, критических точек у функции нет. Стационарные точки найдем из соотношения f′(x)=0:
3x2+24x−27=0|÷3x2+8x−9=0D4=(b2)2−ac=822+9=25x1,2=−b2±D4−−√a=−82±25−−√1=−82±5x1=−82−5=−9x2=−82+5=1
Критические и стационарные точки делят реальную числовую прямую на интервалы с неизменным знаком производной. Чтобы определить знак производной, достаточно вычислить значение производной функции в какой-либо точке соответственного интервала.
Если производная функции в критической (стационарной) точке:
1) меняет знак с отрицательного на положительный, то это точка минимума;
2) меняет знак с положительного на отрицательный, то это точка максимума;
3) не меняет знак, то в этой точке нет экстремума.
Итак, определим точки экстремума:
При x<−9 имеем положительную производную (на этом промежутке функция возрастает); при −9<x<1 имеем отрицательную производную (на этом промежутке функция убывает). Значит, x=−9 — точка максимума функции. При −9<x<1 имеем отрицательную производную, при
Объяснение: