х (км/ч) - скорость 2-го лыжника
у (ч) - время 2-го лыжника
х+3 (км/ч) - скорость 1-го лыжника
у-2 (ч) - время 1-го лыжника
1) ху=180 путь 1-го лыжника
2) (х+3)(у-2)=180 - путь 2-го лыжника
3) ху=(х+3)(у-2)
ху=ху-2х+3у-6
ху-ху+2х-3у+6=0
2х-3у+6=0
4) Т.к. ху=180
у=180/х, подставив значение х, получим
2х-3*(180/х)+6=0
2х- 540/х +6 =0, умножим обе части ур-я на х
2х^2 +6х -540 =0
х^2 +3х - 270 = 0
D=1089
х=15 км/ч - скорость 2-го лыжника
15+3=18 км/ч - скорость 1-го лыжника
ответ: 18 км/ч
дифференцированием.
а) ∫(3x^2+4/x+cosx+1)dx=x³+4·ln IxI+sinx +x +C
проверка:
(x³+4·ln IxI+sinx +x +C)'=3x²+4/x +cosx+1 - верно
б) ∫[4x/√(x^2+4)]dx= [ (x^2+4)=t dt=2xdx ] =∫2dt/√t=4√t+c=4√(x^2+4)+c
проверка:
(4√(x^2+4)+c)'=[4(1/2)/√(x^2+4)]·2·x =4x/√(x^2+4) - верно
в) ∫-2xe^xdx =-2 ∫xe^xdx= [ x=u e^xdx=dv ]
[ dx=du e^x=v ]
-2 ∫xe^xdx=-2( u·v- ∫vdu)=-2(x·e^x-∫e^x·dx)=-2(x· e^x-e^x)+c=-2·(e^x)·(x-1)+c
проверка:
(-2·(e^x)·(x-1)+c)'=-2((e^x)'·(x-1)+(e^x)·(x-1)')=-2((e^x)·(x-1)+(e^x))=-2(e^x)·x
=-2x·(e^x) - верно
х (км/ч) - скорость 2-го лыжника
у (ч) - время 2-го лыжника
х+3 (км/ч) - скорость 1-го лыжника
у-2 (ч) - время 1-го лыжника
1) ху=180 путь 1-го лыжника
2) (х+3)(у-2)=180 - путь 2-го лыжника
3) ху=(х+3)(у-2)
ху=ху-2х+3у-6
ху-ху+2х-3у+6=0
2х-3у+6=0
4) Т.к. ху=180
у=180/х, подставив значение х, получим
2х-3*(180/х)+6=0
2х- 540/х +6 =0, умножим обе части ур-я на х
2х^2 +6х -540 =0
х^2 +3х - 270 = 0
D=1089
х=15 км/ч - скорость 2-го лыжника
15+3=18 км/ч - скорость 1-го лыжника
ответ: 18 км/ч