ответ: 3 решения будет , когда a∈{49} ∪ {4*(10-√51)}
Объяснение:
Рассмотрим уравнение 1 :
(|y-10|+|x+3|-2)*(x^2+y^2-6)=0
Уравнение представляет собой совокупность квадрата с центром в точке: B(-3;10) с половиной диагонали равной 2 и окружность с центром в начале координат и радиусом √6.
Рассмотрим уравнение 2
(x+3)^2+(y-5)^2=a -окружность с центром в точке : A (-3 ;5) и радиусом равным √a (находится на одной вертикали с квадратом из уравнения 1)
На рисунке показаны случаи касания окружности из уравнения к окружности и к квадрату из уравнения 1.
3 решения будет либо когда окружность из уравнения 2 касается квадрата (в 1 точке ) и пересекает окружность уравнения 1 ( в двух точках соответственно) , либо когда касается окружности уравнения и пересекает квадрат ( в двух точках соответственно).
Объяснение:
Собственная скорость Vc= х км/ч.
Против течения :
t₁ = S/(Vc- Vт) = 18 / (x-3) (ч.)
По течению:
t₂= S/ (Vc+Vт) = 48/ (x+3) (ч.)
Всего:
t₁+t₂=3 (ч.)
18/(х-3) + 48/(х+3) = 3 |× (x-3)(x+3)
18(x+3) + 48(x-3) = 3(x-3)(x+3)
18x+54 + 48x - 144= 3(x²-9)
66x -90 = 3x² - 27 |÷3
22x - 30 = x²-9
x²-9 -22x+30=0
x²-22x+21=0
D= (-22)² -4*1*21 = 484-84=400 ; √D= 20
x₁= (22 -20) /2 =2/2=1 - не удовл. условию, т.к. скорость лодки не может быть меньше течения реки
x₂= (22+20)/2= 42/2=21 (км/ч) Vc
ответ: Vc= 21 км/ч.
ответ: 3 решения будет , когда a∈{49} ∪ {4*(10-√51)}
Объяснение:
Рассмотрим уравнение 1 :
(|y-10|+|x+3|-2)*(x^2+y^2-6)=0
Уравнение представляет собой совокупность квадрата с центром в точке: B(-3;10) с половиной диагонали равной 2 и окружность с центром в начале координат и радиусом √6.
Рассмотрим уравнение 2
(x+3)^2+(y-5)^2=a -окружность с центром в точке : A (-3 ;5) и радиусом равным √a (находится на одной вертикали с квадратом из уравнения 1)
На рисунке показаны случаи касания окружности из уравнения к окружности и к квадрату из уравнения 1.
3 решения будет либо когда окружность из уравнения 2 касается квадрата (в 1 точке ) и пересекает окружность уравнения 1 ( в двух точках соответственно) , либо когда касается окружности уравнения и пересекает квадрат ( в двух точках соответственно).
Все обозначения смотрите на рисунке.
Найдем расстояния между центрами:
AB=10-5=5
AO=√(5^2+3^2)=√34
a1=5-2=3 → a=3^2=9
a2=5+2=7 → a=7^2=49
a3=√34-√6=√2* (√17-√3) → a= (√2* (√17-√3) )^2=40-4√51=4*(10-√51)
a4=√34+√6=√2*(√17+√3) → a= (√2*(√17+√3) )^2=4*(10+√51)
Cравним: a1 и a3
3 и √2* (√17-√3)
9 и 40-4*√51
4√51 и 31
816 < 961
Так же очевидно ,что :
a4=√34+√6 >√25+√4 =7=a2
a3=√34-√6<√49=7=a2
a4>a2>a3>a1
Тогда из рисунка видно, что 3 решения получается когда :
a=a3^2=4*(10-√51)
a= a2^2=49
a∈{49} ∪ {4*(10-√51)}
Теперь рассмотрим отдельно то , когда a=0
В этом случае уравнение 2 имеет вид :
(x+3)^2 +(y-5)^2=0
Поскольку квадрат число неотрицательное , то
x=-3 ; y=5
Но эта точка не принадлежит области первого уравнения.
ответ : 3 решения будет , когда a∈{49} ∪ {4*(10-√51)}