1. За 1 - принимается весь объем работы.
Пусть X - время, которое на перепечатку рукописи затрачивает первая машинистка.
Тогда 1/ X - ее производительность.
(X - 2) - время, которое на перепечатку рукописи затрачивает вторая машинистка.
И 1/(X - 2) - ее производительность.
2. Запишем выражение для производительности совместной работы.
2 часа 24 минуты = 2 часа + 24/60 часа = 2,4 часа.
1/ X + 1 / (X - 2) = 2,4.
Решаем уравнение приведением к общему знаменателю.
X - 2 + X = 2,4 * X * X - 4,8 * X.
2,4 * X * X - 6,8 * X + 2 = 0.
3. Решаем квадратное уравнение через дискриминант.
D = 6,8 * 6,8 - 2.4 * 2 * 4 = 46,24 - 19,2 = 27,04
X1 = (6,8 + 5,2) / 4,8 = 12 / 4,8 = 2,5 часа = 2 часа 30 минут- время первой машинистки.
2,5 - 2 = 0,5 = 30 минут - время второй машинистки.
X2 = (6,8 - 5,2) / 4,8 = 1,6 / 4,8 = 1/3 часа.
(1 / 3 - 2) - величина отрицательная, этого быть не может.
Значит в задаче только одно решение.
ответ: Для перепечатки рукописи первой машинистке нужно 2 часа 30 минут, а второй - 30 минут.
Объяснение:
а) у=5 / х²+2;
Область определения этой функции - все значения, кроме тех, при которых знаменатель равен 0. Чтобы найти эти значения, решаем уравнение:
х²+2=0
х²=-2
Это уравнение не имеет решений, так как квадрат числа всегда ≥0
Значит, функция определена на всей числовой оси.
б) у=7х² / х(х+4);
Аналогично, решаем уравнение:
х(х+4)=0
x₁=0
x₂=-4
в) у=√2х²+3х-2;
Выражение под корнем не может быть меньше нуля. Решаем сначала уравнение:
2х²+3х-2=0
D=9+4*2*2=25
x₁=(-3+5)/4=1/2
x₂=(-3-5)/4=-2
На числовой оси отмечам корни x₁ и x₂ и отмечаем знаки получившихся промежутков:
+ - +
-2 1/2
Нам нужны те промежутки, где знак "+".
г) у=√х+4 / √х-5
Во-первых, имеем два выражения под корнем, и во-вторых, знаменатель:
x+4≥0 x-5≥0 x-5≠0
x≥-4 x≥5 x≠5
Находим пересечение решений трёх неравенств:
Рад был
1. За 1 - принимается весь объем работы.
Пусть X - время, которое на перепечатку рукописи затрачивает первая машинистка.
Тогда 1/ X - ее производительность.
(X - 2) - время, которое на перепечатку рукописи затрачивает вторая машинистка.
И 1/(X - 2) - ее производительность.
2. Запишем выражение для производительности совместной работы.
2 часа 24 минуты = 2 часа + 24/60 часа = 2,4 часа.
1/ X + 1 / (X - 2) = 2,4.
Решаем уравнение приведением к общему знаменателю.
X - 2 + X = 2,4 * X * X - 4,8 * X.
2,4 * X * X - 6,8 * X + 2 = 0.
3. Решаем квадратное уравнение через дискриминант.
D = 6,8 * 6,8 - 2.4 * 2 * 4 = 46,24 - 19,2 = 27,04
X1 = (6,8 + 5,2) / 4,8 = 12 / 4,8 = 2,5 часа = 2 часа 30 минут- время первой машинистки.
2,5 - 2 = 0,5 = 30 минут - время второй машинистки.
X2 = (6,8 - 5,2) / 4,8 = 1,6 / 4,8 = 1/3 часа.
(1 / 3 - 2) - величина отрицательная, этого быть не может.
Значит в задаче только одно решение.
ответ: Для перепечатки рукописи первой машинистке нужно 2 часа 30 минут, а второй - 30 минут.
Объяснение:
а) у=5 / х²+2;
Область определения этой функции - все значения, кроме тех, при которых знаменатель равен 0. Чтобы найти эти значения, решаем уравнение:
х²+2=0
х²=-2
Это уравнение не имеет решений, так как квадрат числа всегда ≥0
Значит, функция определена на всей числовой оси.
б) у=7х² / х(х+4);
Аналогично, решаем уравнение:
х(х+4)=0
x₁=0
x₂=-4
в) у=√2х²+3х-2;
Выражение под корнем не может быть меньше нуля. Решаем сначала уравнение:
2х²+3х-2=0
D=9+4*2*2=25
x₁=(-3+5)/4=1/2
x₂=(-3-5)/4=-2
На числовой оси отмечам корни x₁ и x₂ и отмечаем знаки получившихся промежутков:
+ - +
-2 1/2
Нам нужны те промежутки, где знак "+".
г) у=√х+4 / √х-5
Во-первых, имеем два выражения под корнем, и во-вторых, знаменатель:
x+4≥0 x-5≥0 x-5≠0
x≥-4 x≥5 x≠5
Находим пересечение решений трёх неравенств:
Объяснение:
Рад был