Если в дроби стоит только х в квадрате, а х прибавляется потом к дроби, то malru-sv правильно написал. А если в дроби стоит (х в кв. + х), тогда будет система: { x + 3 >= 0 { x^2 + x > 0
{ x >= -3 { x(x + 1) > 0 Распадается на 2 системы: 1) { x >= -3 { x > 0 { x + 1 > 0
{ x >= -3 { x > 0 { x > -1 x > 0, x принадлежит (0, + бесконечность)
2) { x >= -3 { x < 0 { x + 1 < 0
{ x >= -3 { x < 0 { x < -1 -3 <= x < -1, х принадлежит [-3, -1)
ответ: х принадлежит [-3, -1) U (0, + бесконечность)
Возведём в квадрат обе части первого уравнения:
(a₁+a₄)²=2²
a₁²+2*a₁*a₄+a₄²=4
a₁²+a₄²=20
Вычитаем из первого уравнения второе:
2*a₁*a₄=-16
a₁*a₄=-8 a₁*(2-a₁)=-8 2a₁-a²=-8 a₁²-2a₁-8=0 D=36 a₁=4 a₁=-2
a₁+a₄=2 a₄=2-a₁ a₄=-2 a₄=4
1) a₁=4 a₄=-2
a₁+a₄=a₁+a₁+3d=2a₁+3d=2*4+3d=8+3d=2 3d=-6 d=-2
a₈=a₁+7d=4+7*(-2)=4-14=-10
S₈`=(a₁+a₈)*n/2=(4+(-10))*8/2=-6*4=-24.
2) a₁=-2 a₄=4
a₁+a₄=2 a₁+a₁+3d=2a₁+3d=2*(-2)+3d=-4+3d=2 3d=6 d=2
a₈=a₁+7d=-2+7*2=12
S₈``=(a₁+a₈)*n/2=(-2+12)*8/2=10*4=40.
ответ: S₈`=-24 S₈``=40.
А если в дроби стоит (х в кв. + х), тогда будет система:
{ x + 3 >= 0
{ x^2 + x > 0
{ x >= -3
{ x(x + 1) > 0
Распадается на 2 системы:
1)
{ x >= -3
{ x > 0
{ x + 1 > 0
{ x >= -3
{ x > 0
{ x > -1
x > 0, x принадлежит (0, + бесконечность)
2)
{ x >= -3
{ x < 0
{ x + 1 < 0
{ x >= -3
{ x < 0
{ x < -1
-3 <= x < -1, х принадлежит [-3, -1)
ответ: х принадлежит [-3, -1) U (0, + бесконечность)