Объяснение:
Рациональным называется число, которое можно записать простой дробью: q / s, где q - целое, s - натуральное.
Разность рациональных чисел - это рациональное число.
Доказательство:
k/m - n/p = (kp - mn) / mp = q / s,
где q = kp - mn (целое), s = mp (натуральное)
a^2 и b^2 - рациональные числа.
Значит, их разность также является рациональным числом.
Разложим разность квадратов:
a^2 - b^2 = (a - b)(a + b)
Отсюда a + b = (a^2 - b^2) / (a - b)
Это частное рациональных чисел.
Выясним, является ли рациональным частное рациональных чисел.
(k/m) / (n/p) = kp / mn = q / s,
где q = kp (целое), s = mn (натуральное)
при условии, что n/p (делитель) не равен 0.
Да: частное рациональных чисел также рационально.
a + b = (a^2 - b^2) / (a - b) - это частное, в котором делитель (a - b) не равен 0 (так как a не равно b).
Следовательно, a + b - рациональное число, ч. т. д.
Объяснение:
Рациональным называется число, которое можно записать простой дробью: q / s, где q - целое, s - натуральное.
Разность рациональных чисел - это рациональное число.
Доказательство:
k/m - n/p = (kp - mn) / mp = q / s,
где q = kp - mn (целое), s = mp (натуральное)
a^2 и b^2 - рациональные числа.
Значит, их разность также является рациональным числом.
Разложим разность квадратов:
a^2 - b^2 = (a - b)(a + b)
Отсюда a + b = (a^2 - b^2) / (a - b)
Это частное рациональных чисел.
Выясним, является ли рациональным частное рациональных чисел.
(k/m) / (n/p) = kp / mn = q / s,
где q = kp (целое), s = mn (натуральное)
при условии, что n/p (делитель) не равен 0.
Да: частное рациональных чисел также рационально.
a + b = (a^2 - b^2) / (a - b) - это частное, в котором делитель (a - b) не равен 0 (так как a не равно b).
Следовательно, a + b - рациональное число, ч. т. д.
{2х² + 6ху + 3у = 8
Обе части первого уравнения возведём в квадрат
{)√(3х - у + 1))²= (√(х + 2у + 1))²
{2х² + 6ху + 3у = 8
получим
{3х - у + 1 = х + 2у + 1
{2х² + 6ху + 3у = 8
Упростив имеем
{2х = 3у
{2х² + 6ху + 3у = 8
Из первого
х = 1,5у
подставим во второе
2 * (1,5у)² + 6 *1,5у * у + 3у = 8
4,5у² + 9 у² + 3у - 8 = 0
13,5у² + 3у - 8 = 0
Умножим на 10 обе части
135у² + 30у - 80 = 0
Сократим на 5
27у² + 6у - 16 = 0
D = b² - 4ac
D = 6² - 4 * 27 * (-16) = 36 + 1728 = 1764
√D = √1764 = 42
у₁ = (-6 + 42)/(2*27) = 36/54 = 2/3
у₂ = (-6 - 42)/(2*27) = -48/54 = - 8/9
В выражение х = 1,5у подставим у₁ = 2/3 и найдём х₁
х₁ = 1,5 * 2/3 = 3/2 * 2/3 = 1
При у₂ = - 8/9 находим х₂
х₂ = 1,5 * (-8/9) = 3/2 * (-8/9) = - 4/3
Первое решение (1; 2/3)
Второе (- 4/3; - 8/9)
Проверка первого
{√(3*1 - 2/3 + 1) = √(1 + 2* 2/3 + 1)
{2 * 1² + 6*1*2/3 + 3 * 2/3 = 8
упростим
{√(10/3) = √(10/3)
{8 = 8 первое решение удовлетворяет условию
Проверка второго
{√(3*(-4/3) + 8/9 + 1) = √((-4/3) + 2* (-8/9) + 1)
{2 * (-4/3)² + 6*(-4/3) * (-8/9) + 3 * (-8/9) = 8
упростим
{√(-19/9) = √(-19/9)
{72/9 = 8
Второе решение не удовлетв. т.к. отриц. под корнем (-19/9)
ответ: (1; 2/3)