1) (1 - cosα + cos2α)/(sinα - sin2α) = (1 - cosα + 2cos²α - 1)/(sinα - 2sinαcosα) = ( 2cos²α - cosα)/(sinα(1 - 2cosα)) = - cosα(1 - 2cosα)/(sinα(1 - 2cosα)) = - cosα/sinα = -ctgα.
2) sin10°sin30°sin50°sin70° = (2sin10°cos10°sin30°sin50°sin70°)/(2cos10°) = (sin20°sin30°sin50°sin70°)/(2cos10°) = (2sin20°sin30°sin50°cos20°)/(4cos10°) = (sin40°sin30°sin50°)/(4cos10°) = (2sin40°sin30°cos40°)/(8cos10°) = (sin80°sin30°)/(8cos10°) = (cos10°sin30°)/(8cos10°) =(sin30°)/8 = 0,5/8 = 1/16.
3) sinπ/16cos³π/16 - sin³π/16cosπ/16 = sinπ/16cosπ/16(cos²π/16 - sin²π/16) = 0,5·2sinπ/16cosπ/16(cos2π/16) = 0,5sin2π/16cosπ/8 = 0,5sinπ/8cosπ/8 = 0,25·2sinπ/8cosπ/8 = 0,25sin2π/8 = 0,25sinπ/4 = 0,25·√2/2 = √2/8
4) sin(2α - π)/(1 - sin(3π/2 + 2α)) = -sin(2α)/(1 + cos(2α)) = (-2sinαcosα)/(2cos²α) = (-sinα)/(cosα) = -tgα.
5) (2cos²α - sin2α)/(2sin²α - sin2α) = (2cos²α - 2sinαcosα)/(2sin²α - 2sinαcosα) = -(2cosα(sinα - cosα))/(2sinα(sinα - cosα)) = -(cosα)/(sinα) = -ctgα = 4
6) sin36°/sin12° - cos36°/cos12° = (sin36°·cos12° - sin12°·cos36°)/(sin12°·cos12°) = (2sin(36° - 12°))/(2sin12°·cos12°) = (2sin24°)/(sin24°) = 2
7) cos92°·cos2° + 0,5sin4° + 1 = 0,5(cos(92° - 2°) + cos(92° + 2°)) + 0,5sin4° + 1 = 0,5(cos(90°) + cos(94°)) + 0,5sin4° + 1 = 0,5cos94° + 0,5sin4° + 1 = 0,5cos94° + 0,5sin4° + 1 = 0,5(cos94° + sin4°) + 1 = 0,5(-sin4° + sin4°) + 1 = 0 + 1 = 1.
1) (1 - cosα + cos2α)/(sinα - sin2α) = (1 - cosα + 2cos²α - 1)/(sinα - 2sinαcosα) = ( 2cos²α - cosα)/(sinα(1 - 2cosα)) = - cosα(1 - 2cosα)/(sinα(1 - 2cosα)) = - cosα/sinα = -ctgα.
2) sin10°sin30°sin50°sin70° = (2sin10°cos10°sin30°sin50°sin70°)/(2cos10°) = (sin20°sin30°sin50°sin70°)/(2cos10°) = (2sin20°sin30°sin50°cos20°)/(4cos10°) = (sin40°sin30°sin50°)/(4cos10°) = (2sin40°sin30°cos40°)/(8cos10°) = (sin80°sin30°)/(8cos10°) = (cos10°sin30°)/(8cos10°) =(sin30°)/8 = 0,5/8 = 1/16.
3) sinπ/16cos³π/16 - sin³π/16cosπ/16 = sinπ/16cosπ/16(cos²π/16 - sin²π/16) = 0,5·2sinπ/16cosπ/16(cos2π/16) = 0,5sin2π/16cosπ/8 = 0,5sinπ/8cosπ/8 = 0,25·2sinπ/8cosπ/8 = 0,25sin2π/8 = 0,25sinπ/4 = 0,25·√2/2 = √2/8
4) sin(2α - π)/(1 - sin(3π/2 + 2α)) = -sin(2α)/(1 + cos(2α)) = (-2sinαcosα)/(2cos²α) = (-sinα)/(cosα) = -tgα.
5) (2cos²α - sin2α)/(2sin²α - sin2α) = (2cos²α - 2sinαcosα)/(2sin²α - 2sinαcosα) = -(2cosα(sinα - cosα))/(2sinα(sinα - cosα)) = -(cosα)/(sinα) = -ctgα = 4
6) sin36°/sin12° - cos36°/cos12° = (sin36°·cos12° - sin12°·cos36°)/(sin12°·cos12°) = (2sin(36° - 12°))/(2sin12°·cos12°) = (2sin24°)/(sin24°) = 2
7) cos92°·cos2° + 0,5sin4° + 1 = 0,5(cos(92° - 2°) + cos(92° + 2°)) + 0,5sin4° + 1 = 0,5(cos(90°) + cos(94°)) + 0,5sin4° + 1 = 0,5cos94° + 0,5sin4° + 1 = 0,5cos94° + 0,5sin4° + 1 = 0,5(cos94° + sin4°) + 1 = 0,5(-sin4° + sin4°) + 1 = 0 + 1 = 1.
Приравнивая функции, получим откуда
(5;25), (-5;25) - координаты точек пересечения.
2. Найти координаты точек пересечения параболы у=x² и прямой: у = 5
Приравнивая функции, получим откуда
(√5;5), (-√5;5) - координаты точек пересечения.
3. Найти координаты точек пересечения параболы у=x² и прямой: у = -x
Приравнивая функции, получим или откуда
(0;0), (-1;1) - координаты точек пересечения
4. Найти координаты точек пересечения параболы у=x² и прямой: у = 2х
Приравнивая функции, получим или откуда
(0;0), (2;4) - координаты точек пересечения
5. Найти координаты точек пересечения параболы у=x² и прямой: у = 3-2х
Приравнивая функции, получим
(1;1), (-3;9) - координаты точек пересечения
6. Найти координаты точек пересечения параболы у=x² и прямой: у = 2x-1
Приравнивая функции, получим
(1;1) - координаты точки пересечения