В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История

6. Купили 15 ручек двук видов - по 4 грн 50 коп и по 5грн. 40 коп. заплатив за всю покупку 73грн. 80 коп. сколько купили ручек каждого вида.

Показать ответ
Ответ:
Alex90111
Alex90111
04.10.2022 12:08

1) (1 - cosα + cos2α)/(sinα - sin2α) = (1 - cosα + 2cos²α - 1)/(sinα - 2sinαcosα) = ( 2cos²α - cosα)/(sinα(1  - 2cosα)) =  - cosα(1 - 2cosα)/(sinα(1  - 2cosα)) =  - cosα/sinα = -ctgα.

2) sin10°sin30°sin50°sin70° = (2sin10°cos10°sin30°sin50°sin70°)/(2cos10°) = (sin20°sin30°sin50°sin70°)/(2cos10°) = (2sin20°sin30°sin50°cos20°)/(4cos10°) = (sin40°sin30°sin50°)/(4cos10°) = (2sin40°sin30°cos40°)/(8cos10°) = (sin80°sin30°)/(8cos10°) = (cos10°sin30°)/(8cos10°) =(sin30°)/8 = 0,5/8 = 1/16.

3) sinπ/16cos³π/16 - sin³π/16cosπ/16 = sinπ/16cosπ/16(cos²π/16 - sin²π/16) = 0,5·2sinπ/16cosπ/16(cos2π/16) = 0,5sin2π/16cosπ/8 = 0,5sinπ/8cosπ/8 = 0,25·2sinπ/8cosπ/8 = 0,25sin2π/8 = 0,25sinπ/4 = 0,25·√2/2 = √2/8

4) sin(2α - π)/(1 - sin(3π/2 + 2α)) = -sin(2α)/(1 + cos(2α)) = (-2sinαcosα)/(2cos²α) = (-sinα)/(cosα) = -tgα.

5) (2cos²α - sin2α)/(2sin²α - sin2α) = (2cos²α - 2sinαcosα)/(2sin²α - 2sinαcosα) = -(2cosα(sinα - cosα))/(2sinα(sinα - cosα)) = -(cosα)/(sinα) = -ctgα = 4

6) sin36°/sin12° - cos36°/cos12° = (sin36°·cos12° - sin12°·cos36°)/(sin12°·cos12°) =  (2sin(36° - 12°))/(2sin12°·cos12°) = (2sin24°)/(sin24°) = 2

7) cos92°·cos2° + 0,5sin4° + 1 = 0,5(cos(92° - 2°) + cos(92° + 2°)) + 0,5sin4° + 1 = 0,5(cos(90°) + cos(94°)) + 0,5sin4° + 1 = 0,5cos94° + 0,5sin4° + 1 = 0,5cos94° + 0,5sin4° + 1 = 0,5(cos94° + sin4°) + 1 = 0,5(-sin4° + sin4°) + 1 = 0 + 1 = 1.

0,0(0 оценок)
Ответ:
pollifoxs
pollifoxs
02.04.2022 22:54
1. Найти координаты точек пересечения параболы у=x² и прямой: у = 25

Приравнивая функции, получим x^2=25   откуда  x=\pm5

(5;25), (-5;25) - координаты точек пересечения.

2. Найти координаты точек пересечения параболы у=x² и прямой: у = 5

Приравнивая функции, получим x^2=5   откуда  x=\pm\sqrt{5}

(√5;5), (-√5;5) - координаты точек пересечения.

3. Найти координаты точек пересечения параболы у=x² и прямой: у = -x

Приравнивая функции, получим x^2=-x или x(x+1)=0 откуда x_1=0;\, x_2=-1

(0;0), (-1;1) - координаты точек пересечения

4. Найти координаты точек пересечения параболы у=x² и прямой: у = 2х

Приравнивая функции, получим x^2=2x или x(x-2)=0 откуда  x_1=0;\, x_2=2

(0;0), (2;4) - координаты точек пересечения

5. Найти координаты точек пересечения параболы у=x² и прямой: у = 3-2х

Приравнивая функции, получим x^2=3-2x

x^2+2x+1=4\\ \\ (x+1)^2=4\\ \\ x+1=\pm2;~~~\Rightarrow~~~ \left[\begin{array}{ccc}x_1=1\\ \\ x_2=-3\end{array}\right

(1;1), (-3;9) - координаты точек пересечения

6. Найти координаты точек пересечения параболы у=x² и прямой: у = 2x-1

Приравнивая функции, получим x^2=2x-1

x^2-2x+1=0\\ \\ (x-1)^2=0\\ \\ x=1

(1;1) - координаты точки пересечения
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота