№6 На рисунке изображены графики функций вида у = ах2 + bx + c, a+0. Для каждого графика укажите соответствующее ему Значения
коэффициента а и дискриминанта D.
А) a < 0, D < 0; Б) a> 0, D = 0; B) a> 0, D < 0; Г) a < 0, D> 0.
1)
2)
3
3)
4)
т -
0
х
Y
о
0
ответ:
A
Б
В
Г
Объяснение:
lim(x→3) (x + (x²-9)/(x-3)) =
= lim(x→3) (x) + lim(x→3) (x²-9)/(x-3) =
= [3] + [0/0] =
= 3 + lim(x→3) (x²-9)/(x-3) =
= 3 + lim(x→3) (x-3)*(x+3)/(x-3) =
=3 + lim(x→3) (x+3)=
=3 + [6] =
=3 + 6 = 9
lim(x→3) (x + (x²-9)/(x-3)) =
= lim(x→3) (x) + lim(x→3) (x²-9)/(x-3) =
= [3] + [0/0] =
Воспользуемся правилом Лопиталя:
= 3 + lim(x→3) (x²-9)' / (x-3)' =
= 3 + lim(x→3) (2х+0)/(1+0)=
= 3 + lim(x→3) (2х)=
= 3 + [6]=
=3+6=9
lim(x→-2) ((4-х²)/(х-2) +х) =
=lim(x→-2) (4-х²)/(х-2) + lim(x→-2) (х)=
= [0/-4=0] + [-2]=
=0 + (-2) = -2
lim(x→-2) ((4-х²)/(х-2) +х) =
= lim(x→-2) (4-х²)/(х-2) + lim(x→-2) (х)=
= lim(x→-2) (2-х)*(2+х)/(х-2) + lim(x→-2) (х) =
= lim(x→-2) (-(2+х)) + lim(x→-2) (х) =
= [-(0)=0] + [-2]=
=0 + (-2) = -2
Трапеция АВСД: ВС = 8см, АД = 12см. угол А = углу Д = 45гр.
Опустим высоты ВЕ и СР из вершин В и С на основание.
Получим основание, состоящее из трёх отрезков: АЕ = РД и ЕР = ВС = 8.
Если из большего основания вычесть меньшее, то останется 12 - 8 = 4см.
Сумма отрезков АЕ = РД ранв 4 см, тогда каждый отрезок АЕ = РД = 2см.
В ΔАВЕ угол ВЕА = 90гр (ВЕ - высота), А = 45 гр., то угол АВЕ = 45гр. и ΔАВЕ - равнобедренный. ВЕ = АЕ = 2см (нашли высоту)
А гипотенуза АВ = √(АЕ² + ВЕ²) = √8 = 2√2 см
ответ: высота трапеции равна 2см, боковая сторона трапеции равна 2√2 см.
Объяснение: