На каждом кубике выпадает любой из 6 вариантов (1, 2, 3, 4, 5, 6), по правилу умножения всего вариантов выпадения очков на двух кубиках 6 * 6 = 36 - это общее число исходов.
Максимальное число очков 3 или меньше, если на каждом из кубиков выпало 1, 2 или 3 (3 варианта на каждый кубик). По правилу умножения таких исходов 3 * 3 = 9. Тогда благоприятных исходов 36 - 9 = 27.
По формуле классической вероятности вероятность равна отношению числа благоприятных исходов к общему числу исходов, что равно 27/36 = 3/4.
Задание: разложить на множители. множители - компоненты при умножении ⇒выражение представляет собой произведение многочленов. преобразовать данное выражение так, чтобы в каждом слагаемом были одинаковые множители. 1. m-n+p(m-n). 3-е слагаемое состоит из двух множителей р и (m-n), значит первое и второе слагаемое группируем и записываем (m-n). необходимо представить в виде произведения двух множителей. один множитель (m-n), второй множитель в этом слагаемом может быть только 1. получаем: m-n+p(m-n)=(m-n)*1+p*(m-n)=(m-n)*(1-p)
Максимальное число очков 3 или меньше, если на каждом из кубиков выпало 1, 2 или 3 (3 варианта на каждый кубик). По правилу умножения таких исходов 3 * 3 = 9. Тогда благоприятных исходов 36 - 9 = 27.
По формуле классической вероятности вероятность равна отношению числа благоприятных исходов к общему числу исходов, что равно 27/36 = 3/4.
множители - компоненты при умножении ⇒выражение представляет собой произведение многочленов.
преобразовать данное выражение так, чтобы в каждом слагаемом были одинаковые множители.
1. m-n+p(m-n). 3-е слагаемое состоит из двух множителей р и (m-n), значит первое и второе слагаемое группируем и записываем (m-n). необходимо представить в виде произведения двух множителей. один множитель (m-n), второй множитель в этом слагаемом может быть только 1. получаем:
m-n+p(m-n)=(m-n)*1+p*(m-n)=(m-n)*(1-p)
4q(p-1)+p-1=4q*(p-1)+(p-1)*1=(p-1)*(4q+1)
4q(p-1)+1-p=4q*(p-1)-1*(p-1)=(p-1)*(4q-1)