6. Постройте график функции = 2 2 и запишите ее свойства в данную таблицу. Область определения функции
Область значения функции
Название графика функции
Промежуток возрастания функции
Промежуток убывания функции
Точка пересечения графика функции с осью Ох
сумма n последовательных нечетных натуральных чисел при n>1
1+3+5+7+...+(2n-1)=n^2
Доказательство методом математической индукции
База индукции
n=2. 1+3=2^2
Гипотеза индукции
Пусть для n=k утверждение выполняется, т.е. выполняется
1+3+5+7+...+(2k-1)=k^2
Индукционный переход. Докажем, что тогда выполняется утверждение и для n=k+1, т.е, что выполняется
1+3+5+7+...+(2k-1)+(2K+1)=(k+1)^2
1+3+5+7+...+(2k-1)+(2K+1)=используем гипотезу МИ=k^2+(2k+1)=k^2+2k+1=используем формлу квадрату двучлена=(k+1)^2, что и требовалось доказать.
По методому математической индукции формула справедлива.
Число n^2 при n>1 zвляется составным, оно делится на 1,n,n^2.
А значит сумма n последовательных нечетных натуральных чисел при n>1 является составным числом. Доказано
1) 5x² + 30x + 45 = 5*( x² + 6x + 9 ) = 5*( x + 3 )*( x + 3 )
2) 10x² - 90 = 10*( x² - 9 ) = 5*2*( x - 3 )*( x + 3 )
3) cокращаем числитель и знаменатель дроби на 5*( x + 3 )
4) получаем ( x + 3 ) / ( 2*( x - 3 )) = ( x + 3 ) / ( 2x - 6 )
ОТВЕТ ( x + 3 ) / ( 2x - 6 )
N 2
( x² + 25 )/( x² - 25 ) + ( 5 / ( 5 - x ) = ( x² + 25 - 5( x + 5 )) / ( x² - 25 ) =
= ( x² + 25 - 5x - 25 ) / ( x² - 25 ) = ( x² - 5x ) / ( x² - 25 ) = ( x*( x - 5 )) /
/ ( ( x - 5 )*( x + 5 )) = x / ( x + 5 )
ОТВЕТ x / ( x + 5 )