2)54,4 (км) до места встречи пройдёт лодка, плывущая по течению.
3)44,8 (км) до места встречи пройдёт лодка, плывущая против течения.
Объяснение:
Расстояние между двумя пристанями равно 99,2 км. Из них одновременно навстречу друг другу вышли две лодки, скорости которых в стоячей воде равны. Через 1,6 ч. лодки встретились. Скорость течения реки равна 3 км/ч.
1)Скорость лодки в стоячей воде?
2)Сколько километров до места встречи пройдёт лодка, плывущая по течению?
3)Сколько километров до места встречи пройдёт лодка, плывущая против течения?
х - скорость лодки в стоячей воде
х+3 - скорость лодки по течению
х-3 - скорость лодки против течения
Формула движения: S=v*t
S - расстояние v - скорость t - время
Согласно условию задачи составляем уравнение:
(х+3)*1,6+(х-3)*1,6=99,2
Разделим уравнение на 1,6 для упрощения:
(х+3)+(х-3)=62
Раскроем скобки:
х+3+х-3=62
2х=62
х=31 (км/час) скорость лодки в стоячей воде.
(31+3)*1,6=54,4 (км) до места встречи пройдёт лодка, плывущая по течению.
(31-3)*1,6=44,8 (км) до места встречи пройдёт лодка, плывущая против течения.
Дано уравнение x^2 - 4x - 6 = √(2x^2 - 8x + 12).
Чтобы не возводить квадратный трёхчлен в квадрат для избавления от корня в правой части, введём замену: x^2 - 4x = а.
Под корнем выражение 2x^2 - 8x равно 2(x^2 - 4х) = 2а.
Получим а - 6 = √(2а + 12). Так проще возвести в квадрат обе части.
а² - 12а + 36 = 2а + 12.
а² - 14а + 24 = 0. Д = 196 - 4*24 = 100.
а1 = (14 - 10)/2 = 2, а2 = (14 + 10)/2 =12.
x^2 - 4x = 2, x^2 - 4x - 2 = 0, Д = 16 + 8 = 24,
х1 = (4 - √24)/2 , х2 = (4 + √24)/2. При проверке - это лишние корни.
x^2 - 4x = 12, x^2 - 4x - 12 = 0, Д = 16 + 48 = 64,
х1 = (4 - 8)/2 = -2 , х2 = (4 + 8)/2 = 6.
ответ: х1 = -2, х2 = 6.
,
1)31 (км/час) скорость лодки в стоячей воде.
2)54,4 (км) до места встречи пройдёт лодка, плывущая по течению.
3)44,8 (км) до места встречи пройдёт лодка, плывущая против течения.
Объяснение:
Расстояние между двумя пристанями равно 99,2 км. Из них одновременно навстречу друг другу вышли две лодки, скорости которых в стоячей воде равны. Через 1,6 ч. лодки встретились. Скорость течения реки равна 3 км/ч.
1)Скорость лодки в стоячей воде?
2)Сколько километров до места встречи пройдёт лодка, плывущая по течению?
3)Сколько километров до места встречи пройдёт лодка, плывущая против течения?
х - скорость лодки в стоячей воде
х+3 - скорость лодки по течению
х-3 - скорость лодки против течения
Формула движения: S=v*t
S - расстояние v - скорость t - время
Согласно условию задачи составляем уравнение:
(х+3)*1,6+(х-3)*1,6=99,2
Разделим уравнение на 1,6 для упрощения:
(х+3)+(х-3)=62
Раскроем скобки:
х+3+х-3=62
2х=62
х=31 (км/час) скорость лодки в стоячей воде.
(31+3)*1,6=54,4 (км) до места встречи пройдёт лодка, плывущая по течению.
(31-3)*1,6=44,8 (км) до места встречи пройдёт лодка, плывущая против течения.