Какое наименьшее значение и при каком значении переменной принимает выражение х²+14х-16?
при х=-14/2 x=-7 y (-7)=(-7)²+14(-7)-16=49-98-16=-65
или рассмотрим функцию y=х²+14х-16=(x+7)²-65, графиком этой функции является парабола, ветки параболы направлены вверх, (коэффициент при х² равен 1>0), вершина параболы - точка с координатами х0=-7, у0=-65, в вершине функция y=х²+14х-16 принимает наименьшее значение.
Таким образом, наименьшее значение выражение х²+14х-16 принимает при х0=-7 , и оно равно у0=-65.
а) y=(x-2) в 4 степени
1)Четная
2)Определена на всей области определения
3)Вершина в точке (2;0)
4)Ветви направлены вверх.
5)До x<2 убывает.
6)При x>4 возрастает.
б)0.5sinx+2
1) Определена на всей области определения
2) Нечетная
3) Периодическая
4) Возрастает и убывает
5) Знакопостоянна на промежутках
6) Непрерывна
7) График называеться синусойдой
в)y=0.5cosx+2
1)Определена на всей области определения
2)Четная
3)Периодическая
4)Область значений отрезок [ 1,5; 2,5];
5)Убывает на промежутках [KeZ; п+2пk] и возрастает на промежутках [п+2пk;KeZ]
Г)y=-(x+2)в 4 степени.
1)Определена на всей области определения
2) Вершина в точке (-2;0)
3)Возростает (-бесконечности;-2);
4)Убывает (-2;+бесконечности);
5)Ветви направлены в низ
6) Область значений (0;-бесконечности)
7) Ость оссимптот: x=-2
8)Наибольшее значение при y=0; x=-2
9) Наименьшего значения не существует
при х=-14/2 x=-7 y (-7)=(-7)²+14(-7)-16=49-98-16=-65
или рассмотрим функцию y=х²+14х-16=(x+7)²-65,
графиком этой функции является парабола, ветки параболы направлены вверх, (коэффициент при х² равен 1>0), вершина параболы - точка с координатами х0=-7, у0=-65, в вершине функция y=х²+14х-16 принимает наименьшее значение.
Таким образом, наименьшее значение выражение х²+14х-16 принимает при х0=-7 , и оно равно у0=-65.