В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
fida2
fida2
16.07.2020 05:29 •  Алгебра

6cos^2x+7sinx-8=0 подробное решение

Показать ответ
Ответ:
Батаева095
Батаева095
06.10.2020 09:22
6(1-sin^2x)+7sinx-8=0
6-6sin^2x+7sinx-8=0
-6sin^2x+7sinx-2=0
замена sinx=t
-6t^2+7t-2=0
6t^2-7t+2=0
D=49-4*6*2=49-48=1
t1= (7+1)/12=8/12=2/3
t2=(7-1)/12=6/12=1/2

Произведем обратную замену
sinx= 2/3
x=(-1)^k * arcsin2/3 + pi*k, k принадлежит Z

sinx=1/2
x=(-1)^k * pi/6 + pi*k, k принадлежит Z
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота