В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Dasha112111
Dasha112111
07.12.2022 11:16 •  Алгебра

7. Используя график функции y=x, постройте в одной координат- ной плоскости графики функций:
1) у = х2 - 3; 2) у = х2 + 3; 3) y = (х – 42; 4) у = (х + 4).​

Показать ответ
Ответ:
GrankaleS
GrankaleS
13.11.2020 01:36
При n = 1 равенство примет вид 4 = 4, следовательно, P(1) истинно. Предположим, что данное равенство справедливо, то есть, имеет место

1*4+2*7+3*10+...+ n(3n+1)= n(n+1)^2

Следует проверить (доказать), что P(n + 1), то есть

1*4+2*7+3*10+...+ n(3n+1) + (n + 1) (3n + 4) = (n + 1)(n + 2)^2
истинно. Поскольку (используется предположение индукции)

1*4+2*7+3*10+...+ n(3n+1) + (n + 1) (3n + 4) = n(n+1)^2 + (n + 1) (3n + 4) 

получим

n(n+1)^2 + (n + 1) (3n + 4)  = (n + 1) (n (n + 1) + 3n + 4) = 
= (n + 1)(n^2 + n + 3n + 4) = (n + 1) (n^2 + 4n + 4) = 
= (n+ 1)(n + 2)^2 

то есть, P(n + 1) - истинное утверждение.

Таким образом, согласно методу математической индукции, исходное равенство справедливо для любого натурального n.

0,0(0 оценок)
Ответ:
AngelinaKMN00
AngelinaKMN00
13.11.2020 01:36
При n = 1 равенство примет вид 2 = 2, следовательно, P(1) истинно. Предположим, что данное равенство справедливо, то есть, имеет место

1*2 + 2*5 + 3*8 ++n(3n-1) = n^2(n+1)

Следует проверить (доказать), что P(n + 1), то есть

1*2 + 2*5 + 3*8 ++n(3n-1) + (n + 1)(3n + 2)= (n+1)^2(n+2)
истинно. Поскольку (используется предположение индукции)

 1*2 + 2*5 + 3*8 ++n(3n-1) + (n + 1)(3n + 2) =n^2(n+1) + (n + 1)(3n + 2) 

получим

n^2(n+1) + (n + 1)(3n + 2)  = (n + 1) (n^2 + 3n + 2) = (n + 1 )(n + 1)(n + 2) =
= (n + 1)^2 (n + 2)

то есть, P(n + 1) - истинное утверждение.

Таким образом, согласно методу математической индукции, исходное равенство справедливо для любого натурального n.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота