Чтобы сложить дроби с одинаковыми знаменателями, нужно сумму числителей записать в числитель, а в знаменателе записать общий знаменатель. Если необходимо - сократить получившуюся дробь и привести к виду правильной дроби.
1/5+2/5=1+2 /5=3/5
3/8+1/8=3+1 /8=4/8=1/4
Чтобы сложить дроби с разными знаменателями, необходимо найти наименьшее кратное знаменателей и записать в знаменателе, а числители умножить на дополнительные множители и сложить, сумму записать в числителе. По необходимости сократить получившуюся дробь и привести к виду правильной дроби.
Формула нахождения координаты х вершины параболы а координату y будем находить методом подстановки x а). так как b здесь равен нулю, то при делении нуля получаем 0 х верш = 0 у верш = 0 координата точки (0;0) б). после подстановки в формулу и решения выражения получаем х верш = 1,5 у верш = - 1,5 координата точки (1,5;-1,5) в) то же самое, подставляем в формулу и получаем х верш = -5 у верш = 5 координата точки (-5;5) г). для удобства раскроем скобки, получим выражение: x^ - 2x +1 и по формуле: х верш = 1 у верш = 0 координата точки (1;0) д). опять раскроем скобки, получим 2(x^+6x+9) = 2x^ + 12x +18 х верш = -3 у верш = 0 координаты точки (-3;0) е). x^ - 4x +3 х верш = 2 у верш = 1 координата точки (2;1)
Чтобы сложить дроби с одинаковыми знаменателями, нужно сумму числителей записать в числитель, а в знаменателе записать общий знаменатель. Если необходимо - сократить получившуюся дробь и привести к виду правильной дроби.
1/5+2/5=1+2 /5=3/5
3/8+1/8=3+1 /8=4/8=1/4
Чтобы сложить дроби с разными знаменателями, необходимо найти наименьшее кратное знаменателей и записать в знаменателе, а числители умножить на дополнительные множители и сложить, сумму записать в числителе. По необходимости сократить получившуюся дробь и привести к виду правильной дроби.
3/5+1/2= 3*2 + 1*5 /10=6+5 /10=11 /10= 1 1/10
3/8+1/3= 3*3+1*8 / 24= 9+8 /24=17/24
а координату y будем находить методом подстановки x
а). так как b здесь равен нулю, то при делении нуля получаем 0
х верш = 0
у верш = 0
координата точки (0;0)
б). после подстановки в формулу и решения выражения получаем
х верш = 1,5
у верш = - 1,5
координата точки (1,5;-1,5)
в) то же самое, подставляем в формулу и получаем
х верш = -5
у верш = 5
координата точки (-5;5)
г). для удобства раскроем скобки, получим выражение: x^ - 2x +1
и по формуле:
х верш = 1
у верш = 0
координата точки (1;0)
д). опять раскроем скобки, получим 2(x^+6x+9) = 2x^ + 12x +18
х верш = -3
у верш = 0
координаты точки (-3;0)
е). x^ - 4x +3
х верш = 2
у верш = 1
координата точки (2;1)