4
Объяснение:
а)ОДЗ:
{ tan(x) ≥0 (Т.к. подкоренное выражение всегда неотрицательно)
{ cos(x) ≠0 (Т.к. тангенс это синус, делённый на косинус,а на ноль делить нельзя)
Произведение равно нулю,когда хотя бы один из множителей равен нулю
1) 2sin²(x)-3cos(x) = 0
Из основного тригонометрического тождества sin²(x)+cos²(x) = 1 выразим синус
sin²(x) = 1-cos²(x)
2(1-cos²(x))-3cos(x) = 0
2-2cos²(x)-3cos(x) = 0|:(-1)
2cos²(x)+3cos(x)-2 = 0
Пусть cos(x) = t, -1 ≤ t ≤ 1, тогда
2t²+3t-2 = 0
D = 3²-4*2*(-2) = 9+16 = 25 = 5²
Второй корень меньше -1,поэтому мы его рассматривать не будем
Вернёмся к замене
Если t = 0,5, тогда
cos(x) = 0,5
Это равенство распадается на совокупность двух:
[ x = arccos(0,5) + 2пn, n∈Z
[ x = -arccos(0,5) + 2пn, n∈Z
[ x = п/3 + 2пn, n∈Z
[ x = -п/3 + 2пn, n∈Z
Второй корень не подходит по ОДЗ,так что единственное решение этого равенства x = п/3 + 2пn, n∈Z
2)
Дробь равна нулю,когда числитель равен нулю,а знаменатель не равен нулю
{ sin(x) = 0
{ cos(x) ≠ 0
{ х = пn, n∈Z
{ x ≠ п/2 + пn, n∈Z
Пересечений с ОДЗ нет,поэтому наше решение входит в ответ
б) Находим количество решений на отрезке [0;2П] ( см. вложение)
По рисунку мы видим,что у уравнения на данном отрезке 4 корня(0,п/3,п,2п)
4
Объяснение:
а)ОДЗ:
{ tan(x) ≥0 (Т.к. подкоренное выражение всегда неотрицательно)
{ cos(x) ≠0 (Т.к. тангенс это синус, делённый на косинус,а на ноль делить нельзя)
Произведение равно нулю,когда хотя бы один из множителей равен нулю
1) 2sin²(x)-3cos(x) = 0
Из основного тригонометрического тождества sin²(x)+cos²(x) = 1 выразим синус
sin²(x) = 1-cos²(x)
2(1-cos²(x))-3cos(x) = 0
2-2cos²(x)-3cos(x) = 0|:(-1)
2cos²(x)+3cos(x)-2 = 0
Пусть cos(x) = t, -1 ≤ t ≤ 1, тогда
2t²+3t-2 = 0
D = 3²-4*2*(-2) = 9+16 = 25 = 5²
Второй корень меньше -1,поэтому мы его рассматривать не будем
Вернёмся к замене
Если t = 0,5, тогда
cos(x) = 0,5
Это равенство распадается на совокупность двух:
[ x = arccos(0,5) + 2пn, n∈Z
[ x = -arccos(0,5) + 2пn, n∈Z
[ x = п/3 + 2пn, n∈Z
[ x = -п/3 + 2пn, n∈Z
Второй корень не подходит по ОДЗ,так что единственное решение этого равенства x = п/3 + 2пn, n∈Z
2)
Дробь равна нулю,когда числитель равен нулю,а знаменатель не равен нулю
{ sin(x) = 0
{ cos(x) ≠ 0
{ х = пn, n∈Z
{ x ≠ п/2 + пn, n∈Z
Пересечений с ОДЗ нет,поэтому наше решение входит в ответ
б) Находим количество решений на отрезке [0;2П] ( см. вложение)
По рисунку мы видим,что у уравнения на данном отрезке 4 корня(0,п/3,п,2п)
= -3a^2/4b(b+c)
2) (m-n)^2\m^2-n^2 = (m-n)^2 / (m-n)(m+n) = (m-n)/(m+n)
3) 6pq-18p\(q-3)^2 = 6p(q - 3)/(q - 3)^2 = 6p/(q-3)
4) c^2-18c+81\c-9 = (c-9)^2 / (c-9) = c - 9
5) 5-2m\4m^2-20m+25 = (5 - 2m)/(5-2m)^2 = 1/(5-2m)
6) b^2-49\49-14b+b^2 = (b-7)(b+7)/(b-7)^2= (b+7)/(b-7)
7) 4n^2-4nm+m^2\4n^2-m^2 = (2n-m)^2 / (2n-m)(2n+m) =(2n-m)/(2n+m)
8) a^2-ab-bс-c^2\b^2-a^2+2ac-c^2 = [(a^2-c^2) - b(a+c)] / [b^2 - (a-c)^2] =
= [(a-c)(a+c) - b(a+c)] / [(b-(a-c)(b+(a-c)] = [(a+c)(a-c-b)]/ [-(a-c-b)(a+b-c)]=
= -(a+c)/(a+b-c)
9) x^2-yz+xz-y^2\x^2+yz-xz-y^2 = = [(x^2-y^2) - z(x-y)] / [(x^2-y^2) - z(x-y)]=1
10) 8^11-8^10-8^9\4^15-4^14-4^13 = 8^4(1-1^6-1^5) / 4^12(1^3-1^2-1) =
= 8^4 (1-1-1)/4^12(1-1-1) = 8^4/4^12
11) 87^3+43^3\87^2-87*43+43^2 =
= (87+43)(87^2-87*43+43^2)/(87^2-87*43+43^2) =(87+43) = 130