1)
7(3x+2)-3(7x+2)<2x
21x+14-21x-6<2x
8<2x
-2x<-8
x>4
x²+3x-40≤0
x²+3x-40=(x-5)(x+8)
D=13²
x1=5
x2=-8
(x-5)(x+8)≤0
5 -8
x∈[-8;5]
После объединения в один чертёж:
ответ: x∈(4;5]
2)
x²-10x+25≠0
D=0
x≠5
x²-10x+25=(x-5)²
x²(4-x)≤0
-x²(x-4)≤0
⇒ -x²(x-4)*(x-5)²≤0
-x²=0
x=0(знак на чертеже дублируется)
x-4=0
x=4
(x-5)²=0
x=5(знак дублируется и 5 выкалывается)
ответ: x∈[4;5)∪(5;∞)
3)
x²-5x+7>0
x²-5x+7
D=25-28=-3
⇒x>0 при любых x
Дополнительно: После D=-x - не всегда неравенство имеет решение - надо смотреть по графику (в вашем случаи - при любых x)
x²≤81
x²-81≤0
(x-9)(x+9)≤0
9;-9
ответ: x∈[-9;9]
1. 4⅓+3(1/5)=(13/3)+(16/5)=(13×5+16×3)/15=(65+48)/15=(113/15)
2. (113/15)÷113=(113/15)×(1/113)=(1/15)
2) (6-7⅛)×((2/9)+⅔)=(-1)
1. 6-7⅛=6-(57/6)=(6×8-57)/8=(48-57)/8=(-9/8)
2. (2/9)+⅔=(2+2×3)/9=(8/9)
3. (-9/8)×(8/9)=-1
3) 17÷(4⅓-3(1/5))=15
1. 4⅓-3(1/5)=(13/3)-(16/5)=(13×5-16×3)/15=(65-48)/15=17/15
2. 17÷(17/15)=17×15/17=15
4) (15-4⅛)×(3(14/15)-2(3/5))=14,5
1. 15-4⅛=15-(33/8)=(15×8-33)/8=(120-33)/8=(87/8)
2. 3(14/15)-2(3/5)=(59/15)-(13/5)=(59-13×3)/15=(59-39)/15=20/15
3. (87/8)×(20/15)=(87×4×5)/(2×4×3×5)=87/6=29/2=14½=14,5
1)
7(3x+2)-3(7x+2)<2x
21x+14-21x-6<2x
8<2x
-2x<-8
x>4
x²+3x-40≤0
x²+3x-40=(x-5)(x+8)
D=13²
x1=5
x2=-8
(x-5)(x+8)≤0
5 -8
x∈[-8;5]
После объединения в один чертёж:
ответ: x∈(4;5]
2)
x²-10x+25≠0
D=0
x≠5
x²-10x+25=(x-5)²
x²(4-x)≤0
-x²(x-4)≤0
⇒ -x²(x-4)*(x-5)²≤0
-x²=0
x=0(знак на чертеже дублируется)
x-4=0
x=4
(x-5)²=0
x=5(знак дублируется и 5 выкалывается)
ответ: x∈[4;5)∪(5;∞)
3)
x²-5x+7>0
x²-5x+7
D=25-28=-3
⇒x>0 при любых x
Дополнительно: После D=-x - не всегда неравенство имеет решение - надо смотреть по графику (в вашем случаи - при любых x)
x²≤81
x²-81≤0
(x-9)(x+9)≤0
9;-9
ответ: x∈[-9;9]