1) по теореме косинусов имеем: a² = b² + c² - 2bc cos a = 25 - 24 cos 135° = 25 + 12√2 a = √(25 + 12√2) по теореме синусов, a / sin a = b / sin b sin b = sin a · b / a = √2 / 2 · 3 / √(25 + 12√2) = 3 / √(50 + 24√2) ∠b = arcsin(3 / √(50 + 24√2)) ∠c = 180° - 135° - ∠b = 45° - arcsin(3 / √(50 + 24√2)) 2) ∠a = 180° - ∠b - ∠c = 65° по теореме синусов b / sin b = a / sin a b = a sin b / sin a = 24.6 · √2 / 2 / (sin 65°) = 123√2 / (10 sin 65°) по теореме синусов c / sin c = a / sin a c = a sin c / sin a = 24.6 ·sin 70° / sin 65°
50 км/ч.
Объяснение:
300 : 3 = 100 (км) - проехал поезд до остановки.
300 - 100 = 200 (км) - проехал поезд после остановки.
Пусть х км/ч - скорость поезда до остановки,
тогда (х - 10) км/ч - скорость поезда после остановки.
Составим уравнение:
100(x - 10) + 200х + х(х - 10) =8х(х - 10)
100х - 1000 + 200х + х² - 10х = 8х² - 80х
8х² - х² + 10х - 80х - 100х - 200х + 1000 = 0
7х² - 370х + 1000 = 0
D = (- 370)² - 4 * 7 * 1000 = 136900 - 28000 = 108900 = 330²
Второй корень не подходит, так как имея такую скорость, поезд не смог бы её сбросить на 10 км/ч.
Значит, скорость поезда до остановки была 50 км/ч.