В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
NedFlanders
NedFlanders
10.04.2021 00:58 •  Алгебра

732*569+288*560

49*780-78*390

Показать ответ
Ответ:
dashakoshelevap06xlg
dashakoshelevap06xlg
01.02.2022 16:31
Пусть х(грн) - стоит 1кг апельсинов, а у(грн) - стоит 1кг лимонов, тогда 5кг апельсинов стоят 5х(грн), а 6кг лимонов стоят 6у(грн), вместе они стоят 150грн, получаем уравнение 5х+6у=150. 4кг апельсинов стоят 4х(грн), а 3кг лимонов 3у(грн), раз 4кг апельсинов дороже на 3грн, то получим уравнение 4х-3у=3. Составим и решим систему уравнений:5х+6у=150,4х-3у=3;Решим систему сложения, умножив второе уравнение на 2, получим:5х+6у=150,8х-6у=6; 13х=156,4х-3у=3; х=12,48-3у=3; х=12,-3у=-45; х=12,у=15.12(грн)-стоит 1кг апельсинов15(грн)-стоит 1кг лимонов
0,0(0 оценок)
Ответ:
ilia9999999999
ilia9999999999
26.02.2021 05:18

\dfrac{a^4}{24} +\dfrac{a^3}{4} +\dfrac{11a^2}{24} +\dfrac{a}{4},\ a\in\mathbb{Z}

Преобразуем выражение:

\dfrac{a^4}{24} +\dfrac{a^3}{4} +\dfrac{11a^2}{24} +\dfrac{a}{4} =\dfrac{a^4}{24} +\dfrac{6a^3}{24} +\dfrac{11a^2}{24} +\dfrac{6a}{24} =\dfrac{a^4+6a^3+11a^2+6a}{24}

Рассмотрим и преобразуем числитель:

a^4+6a^3+11a^2+6a=a(a^3+6a^2+11a+6)=

=a(a^3+a^2+5a^2+5a+6a+6)=a(a^2(a+1)+5a(a+1)+6(a+1))=

=a(a+1)(a^2+5a+6)=a(a+1)(a^2+2a+3a+6)=

=a(a+1)(a(a+2)+3(a+2))=a(a+1)(a+2)(a+3)

Получилось произведение четырех подряд идущих целых чисел.

Из четырех подряд идущих целых чисел гарантированно найдется хотя бы одно, кратное 3. Также, из четырех подряд идущих целых чисел найдется два четных числа, одно из которых не только четное, но и кратно 4.

Таким образом, в произведении гарантированно есть множители 3, 2 и 4. Тогда, такое произведение делится на 3\cdot2\cdot4=24.

Запишем:

a(a+1)(a+2)(a+3)\,\vdots\,24

\Rightarrow(a^4+6a^3+11a^2+6a)\,\vdots\,24

В исходной дроби такое выражение как раз делится на 24. Как выясняется, это выражение кратно 24. Значит, результат деления на 24 будет целым числом:

\dfrac{a^4+6a^3+11a^2+6a}{24}\in \mathbb{Z}

\Rightarrow\left(\dfrac{a^4}{24} +\dfrac{a^3}{4} +\dfrac{11a^2}{24} +\dfrac{a}{4} \right)\in\mathbb{Z}

Доказано.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота