Пусть Х1, Х2 ... Xn - выборка независимых случайных величин.
Упорядочим эти величины по возрастанию, иными словами, построим вариационный ряд:
Х(1) < Х(2) < ... < X (n) , (*)
где Х(1) = min ( Х1, Х2 ... Xn),
Х(n) = max ( Х1, Х2 ... Xn).
Элементы вариационного ряда (*) называются порядковыми статистиками.
Величины d(i) = X(i+1) - X(i) называются спейсингами или расстояниями между порядковыми статистиками.
Размахом выборки называется величина
R = X(n) - X(1)
Иными словами, размах это расстояние между максимальным и минимальным членом вариационного ряда.
Выборочное среднее равно: = (Х1 + Х2 + ... + Xn) /
График функции является параболой.
Основные точки параболы обозначим как: точка А - вершина параболы; B и С - точки пересечения с осью X; D - точка пересечения с осью Y.
Точка А - вершина параболы:
Вершина по оси x параболы по формуле -b/2a: -8/2=-4
Вершина по оси y подстановкой x: 16-32+7= -9
Координаты А(-4;-9)
Точки В и С - пересечение c осью X
Очевидно, что раз точки лежат на оси X, то координата y равна 0, поэтому решаем квадратное уравнение. По теореме Виета корни: -1 и -7.
Следовательно, координаты B(-1;0) и C(-7;0)
Точка D - пересечение с осью Y
Аналогично нахождению точек B и С, координата x равна 0. Подставим в функцию и найдём координату y: 0+0+7=7
Координаты D(0;7)
Для наглядности прикрепляю к ответу график функции.
Пусть Х1, Х2 ... Xn - выборка независимых случайных величин.
Упорядочим эти величины по возрастанию, иными словами, построим вариационный ряд:
Х(1) < Х(2) < ... < X (n) , (*)
где Х(1) = min ( Х1, Х2 ... Xn),
Х(n) = max ( Х1, Х2 ... Xn).
Элементы вариационного ряда (*) называются порядковыми статистиками.
Величины d(i) = X(i+1) - X(i) называются спейсингами или расстояниями между порядковыми статистиками.
Размахом выборки называется величина
R = X(n) - X(1)
Иными словами, размах это расстояние между максимальным и минимальным членом вариационного ряда.
Выборочное среднее равно: = (Х1 + Х2 + ... + Xn) /
График функции является параболой.
Основные точки параболы обозначим как: точка А - вершина параболы; B и С - точки пересечения с осью X; D - точка пересечения с осью Y.
Точка А - вершина параболы:
Вершина по оси x параболы по формуле -b/2a: -8/2=-4
Вершина по оси y подстановкой x: 16-32+7= -9
Координаты А(-4;-9)
Точки В и С - пересечение c осью X
Очевидно, что раз точки лежат на оси X, то координата y равна 0, поэтому решаем квадратное уравнение. По теореме Виета корни: -1 и -7.
Следовательно, координаты B(-1;0) и C(-7;0)
Точка D - пересечение с осью Y
Аналогично нахождению точек B и С, координата x равна 0. Подставим в функцию и найдём координату y: 0+0+7=7
Координаты D(0;7)
Для наглядности прикрепляю к ответу график функции.