Для начала упростим имеющееся выражение по формуле произведения синуса на косинус:
В нашем случае получается:
Итак, от мы перешли к . Теперь будем рассматривать период. Говоря простым языком, период - это какое-то определённое значение, пройдя которое мы вернёмся в ту же самую точку, из которой начинали движение. Должно выполняться вот это равенство: , где - это и есть этот период. В нашем случае получается вот так:
Теперь есть два решения этого уравнения. Первый - это муторный и прямолинейный. Просто перенести всё в левую часть, далее через разность синусов и так медленно добираться до периода. Второй намного проще, но надо понимать, что происходит. Дело в том, что мы изменять не можем, так как это переменная, которую нам надо найти. Зато мы можем присвоить любое удобное нам значение. Он ни на что не влияет, равенство в рамке продолжает соблюдаться, поскольку мы заменим икс в обеих частях, но всё станет намного проще. Например, здесь удобнее взять . Нам известно, что , и вся левая часть в него превратится. Получится вот так:
Теперь просто решаем обычное тригонометрическое уравнение и находим .
Итак, вот мы к этому и пришли. Возникает вопрос, что делать с ? В условии задания написано, что нужно найти наименьший положительный период данной функции. Так как , то . Положительное число должно быть больше нуля, и очевидно, что при . Поэтому подставляем наше первое значение: . При нём получаем:
Но не стоит сразу радоваться. Сначала проверим период на соответствие равенству .
Согласно формуле приведения, , отсюда имеем:
Равенство не выполнено, значит, не является периодом данной функции. Проверяем дальше, .
Cos^2(x)+cos^2(2x)=cos^2(3x)+cos^2(4x) cos^2(x) - cos^2(3x) = cos^2(4x) - cos^2(2x) далее разность квадратов с обоих сторон (cos(x) - cos(3x))*(cos(x) + cos(3x)) = (cos(4x) - cos(2x))*(cos(4x) + cos(2x)) далее применяем формулы cosa-cosb=-2sin( (a+b)/2 )*sin( (a-b)/2 ) cosa+cosb=2cos( (a+b)/2 )*cos( (a-b)/2 ) получаем, -2sin( (x+3x)/2 )*sin( (x-3x)/2 ) * 2cos( (x+3x)/2 )*cos( (x-3x)/2 ) = = -2sin( (4x+2x)/2 )*sin( (4x-2x)/2 ) * 2cos( (4x+2x)/2 )*cos( (4x-2x)/2 ) слегка, 2-йки сокращаем, имеяя ввиду, что sin(-x)=-sin(x), а cos(-x)=cos(x) sin(2x)*sin(x)*cos(2x)*cos(x)=-sin(3x)*sin(x)*cos(3x)*cos(x) сокращая на sin(x) и cos(x) имеем ввиду, что это также является решением уравнения, т. е. уравнение распадается на три уравнения 1) sin(x)=0, тут x=пk, где k-целое число 2) cos(x)=0, тут x=п/2*k, где k-целое число 3) после сокращения на sinx и cosx sin(2x)cos(2x)=-sin(3x)cos(3x) здесь применяем формулу sin(2x)=2*sin(x)*cos(x), получаем 1/2*sin(4x)=-1/2*sin(6x) sin(4x)+sin(6x)=0 далее применяем формулу sina+sinb=2sin( (a+b)/2 )*cos( (a-b)/2 ), получаем 2sin( (4x+6x)/2 )*cos( (4x-6x)/2 ) = 0 на 2 сокращаем, получаем sin(5x)*cos(x) = 0 cos(x)=0 у нас уже имелось в пункте 2) остается sin(5x)=0 => 5x=пk => x=п/5*k, k - целое объединяем решения: 1)x=пk, где k-целое число 2)x=п/2*k, где k-целое число 3)x=п/5*k, k - целое третье включает в себя первое, можно на тригонометрическом круге посмотреть, если так не понятно, поэтому остается 2)x=п/2*k, где k-целое число 3)x=п/5*k, k - целое число дальше мудохаться не стоит, ответ: x=п/2*k, где k-целое число и x=п/5*k,где k - целое число p.s. п-это пи=3.1415 если что (число эйлера вроде как)
Для начала упростим имеющееся выражение по формуле произведения синуса на косинус:
В нашем случае получается:
Итак, от мы перешли к . Теперь будем рассматривать период. Говоря простым языком, период - это какое-то определённое значение, пройдя которое мы вернёмся в ту же самую точку, из которой начинали движение. Должно выполняться вот это равенство: , где - это и есть этот период. В нашем случае получается вот так:
Теперь есть два решения этого уравнения. Первый - это муторный и прямолинейный. Просто перенести всё в левую часть, далее через разность синусов и так медленно добираться до периода. Второй намного проще, но надо понимать, что происходит. Дело в том, что мы изменять не можем, так как это переменная, которую нам надо найти. Зато мы можем присвоить любое удобное нам значение. Он ни на что не влияет, равенство в рамке продолжает соблюдаться, поскольку мы заменим икс в обеих частях, но всё станет намного проще. Например, здесь удобнее взять . Нам известно, что , и вся левая часть в него превратится. Получится вот так:
Теперь просто решаем обычное тригонометрическое уравнение и находим .
Итак, вот мы к этому и пришли. Возникает вопрос, что делать с ? В условии задания написано, что нужно найти наименьший положительный период данной функции. Так как , то . Положительное число должно быть больше нуля, и очевидно, что при . Поэтому подставляем наше первое значение: . При нём получаем:
Но не стоит сразу радоваться. Сначала проверим период на соответствие равенству .
Согласно формуле приведения, , отсюда имеем:
Равенство не выполнено, значит, не является периодом данной функции. Проверяем дальше, .
Точно так же подставляем в .
По формуле приведения , поэтому:
А потому и является искомым периодом.
ответ: В)