Нужно использовать следующие свойства числовых неравенств:
1. К обеим частям верного числового неравенства можно прибавить одно и то же число и получится верное числовое неравенство, т.е.:
если а < b и с - любое число, то a + c < b + c.
2. Обе части верного числового неравенства можно умножить (разделить) на одно и то же положительное число, при этом получиться верное числовое неравенство; если же число отрицательное, то знак неравенства изменится на противоположный, т.е.:
если а < b и с > 0, то ac < bc;
если а < b и с < 0, то ac >bc.
Таким образом, если а < b, то: 2,5а < 2,5b (2,5 > 0),
Из цифр 0, 1, 2, 3, 4 можно составить 120 перестановок, из них надо исключить те перестановки, которые начинаются на 0, т.е. 24 перестановок. Значит, искомое число пятизначных чисел равно 96.
ответ: 96
Найдем сколько всего можно составить перестановок из чисел 0, 1, 2, 3, 4.
На место первой цифры числа можно поставить 5 чисел (т.е. любое из предложенных), тогда на второе мы сможем поставить только 4 (так как одно уже записано, а повторяться не могут), и так далее. Получим:
5*4*3*2*1=120
Найдём сколько перестановок начинается на 0. Первым числом может быть только ноль, то есть 1 число, на второе мы можем записать одно из 4 оставшихся, на третье место уже любое из 3 (так как два записали, а повторяться не могут), и так далее. Получим:
1*4*3*2*1=24
Теперь можно найти сколько пятизначных чисел, Не начинающихся на ноль, можно составить:
Нужно использовать следующие свойства числовых неравенств:
1. К обеим частям верного числового неравенства можно прибавить одно и то же число и получится верное числовое неравенство, т.е.:
если а < b и с - любое число, то a + c < b + c.
2. Обе части верного числового неравенства можно умножить (разделить) на одно и то же положительное число, при этом получиться верное числовое неравенство; если же число отрицательное, то знак неравенства изменится на противоположный, т.е.:
если а < b и с > 0, то ac < bc;
если а < b и с < 0, то ac >bc.
Таким образом, если а < b, то: 2,5а < 2,5b (2,5 > 0),
а затем и 2,5а - 7 < 2,5b - 7.
ответ: 2,5а - 7 < 2,5b - 7.
Из цифр 0, 1, 2, 3, 4 можно составить 120 перестановок, из них надо исключить те перестановки, которые начинаются на 0, т.е. 24 перестановок. Значит, искомое число пятизначных чисел равно 96.
ответ: 96
Найдем сколько всего можно составить перестановок из чисел 0, 1, 2, 3, 4.
На место первой цифры числа можно поставить 5 чисел (т.е. любое из предложенных), тогда на второе мы сможем поставить только 4 (так как одно уже записано, а повторяться не могут), и так далее. Получим:
5*4*3*2*1=120
Найдём сколько перестановок начинается на 0. Первым числом может быть только ноль, то есть 1 число, на второе мы можем записать одно из 4 оставшихся, на третье место уже любое из 3 (так как два записали, а повторяться не могут), и так далее. Получим:
1*4*3*2*1=24
Теперь можно найти сколько пятизначных чисел, Не начинающихся на ноль, можно составить:
120–24=96