Всего 6-значных чисел 900000: на первое место можно поставить одну из 9 цифр, на оставшиеся - любую из 10.
Посчитаем, у скольких чисел произведение цифр не делится на 4. Такое бывает в двух случаях:
Произведение цифр нечётное, тогда все цифры нечётные, на каждое место можно независимо выбирать один из 5 вариантов цифры. Таких чисел Произведение цифр делится на 2, но не на 4, тогда в числе одна из цифр 2 или 6, а остальные - нечетные. Выбрать место для четной цифры можно а после этого расставить цифры - Всего получаем чисел.
Общее количество чисел, произведение цифр которых не делится на 4, равно , значит, искомое количество равно
2) Ось симметрии параболы проходит через вершину параболы параллельно оси Оу, значит, ось симметрии можно задать уравнением х=2
3) Точки пересечения графика функции с осями координат:
с осью Оу: х=0, y(0)=0²-4*0+3=3
Значит, (0;3) - точка пересечения параболы с осью Оу
с осью Ох: у=0, x²-4x+3=0
D=(-4)²-4*3*1=16-12=4=2²
x₁=(4+2)/2=6/2=3
x₂=(4-2)/2=2/2=1
(3;0) и (1;0) - точки пересечения с осью Ох
4) Строим график функции:
Уже найдены вершина параболы и точки пересечения с осями координат. Точка (4;3) - расположена симметрично точке (0;3) относительно оси симметрии параболы
5) По рисунку видно, что график функции находится в I, II и IV четвертях.
846875
Объяснение:
Всего 6-значных чисел 900000: на первое место можно поставить одну из 9 цифр, на оставшиеся - любую из 10.
Посчитаем, у скольких чисел произведение цифр не делится на 4. Такое бывает в двух случаях:
Произведение цифр нечётное, тогда все цифры нечётные, на каждое место можно независимо выбирать один из 5 вариантов цифры. Таких чисел Произведение цифр делится на 2, но не на 4, тогда в числе одна из цифр 2 или 6, а остальные - нечетные. Выбрать место для четной цифры можно а после этого расставить цифры - Всего получаем чисел.Общее количество чисел, произведение цифр которых не делится на 4, равно , значит, искомое количество равно
y=x²-4x+3
y=ax²+bx+c
a=1, b=-4, c=3
1) Координаты вершины параболы:
х(в)= -b/2a = -(-4)/(2*1)=4/2=2
у(в) = 2²-4*2+3=4-8+3=-1
V(2; -1) - вершина параболы
2) Ось симметрии параболы проходит через вершину параболы параллельно оси Оу, значит, ось симметрии можно задать уравнением х=2
3) Точки пересечения графика функции с осями координат:
с осью Оу: х=0, y(0)=0²-4*0+3=3
Значит, (0;3) - точка пересечения параболы с осью Оу
с осью Ох: у=0, x²-4x+3=0
D=(-4)²-4*3*1=16-12=4=2²
x₁=(4+2)/2=6/2=3
x₂=(4-2)/2=2/2=1
(3;0) и (1;0) - точки пересечения с осью Ох
4) Строим график функции:
Уже найдены вершина параболы и точки пересечения с осями координат. Точка (4;3) - расположена симметрично точке (0;3) относительно оси симметрии параболы
5) По рисунку видно, что график функции находится в I, II и IV четвертях.
Объяснение: