Объяснение: Чтобы найти функцию, обратную данной функции y=f(x), надо: 1) В формулу функции вместо y подставить x, вместо x — y, получим x=f(y). 2) Из полученного выражения выразить у через х.
1) а)Если взять функцию y=x⁴, то она не является обратной, поскольку значение функции имеет несколько значений аргумента, например y=16, при x=2; x=-2.
Однако, если рассматривать данную функцию только на множестве положительных чисел, она будет обратимой:
y=x⁴;
x=y⁴; ⇒ y=x¹⁾⁴ (х в степени 1/4) -обратная функция
2) Найти область значений функции f(x)= √x²+6x-1/ x²
Функция имеет смысл, если х≠0.
Пусть выражение √(x²+6*x-1)/x² =а, тогда √(x²+6*x-1) =ах²
Если а=0, то √(x²+6*x-1)=0 ⇒ х²+6х-1=0, дискриминант D= 36+4=40 ⇒ x₁₂= -3±√10. Уравнение имеет корни, значит а=0 годится., это наименьшее значение f(x).
Если а≠0, то x²+6*x-1 =а²х⁴ ⇒ x²+6*x-1 >0 , т.е. на промежутке (-∞;-3-√10)∪(-3+√10) функция f(x)>0 ⇒ область значений Е(f)= (0;+∞)
дифференцированием.
а) ∫(3x^2+4/x+cosx+1)dx=x³+4·ln IxI+sinx +x +C
проверка:
(x³+4·ln IxI+sinx +x +C)'=3x²+4/x +cosx+1 - верно
б) ∫[4x/√(x^2+4)]dx= [ (x^2+4)=t dt=2xdx ] =∫2dt/√t=4√t+c=4√(x^2+4)+c
проверка:
(4√(x^2+4)+c)'=[4(1/2)/√(x^2+4)]·2·x =4x/√(x^2+4) - верно
в) ∫-2xe^xdx =-2 ∫xe^xdx= [ x=u e^xdx=dv ]
[ dx=du e^x=v ]
-2 ∫xe^xdx=-2( u·v- ∫vdu)=-2(x·e^x-∫e^x·dx)=-2(x· e^x-e^x)+c=-2·(e^x)·(x-1)+c
проверка:
(-2·(e^x)·(x-1)+c)'=-2((e^x)'·(x-1)+(e^x)·(x-1)')=-2((e^x)·(x-1)+(e^x))=-2(e^x)·x
=-2x·(e^x) - верно
Объяснение: Чтобы найти функцию, обратную данной функции y=f(x), надо: 1) В формулу функции вместо y подставить x, вместо x — y, получим x=f(y). 2) Из полученного выражения выразить у через х.
1) а)Если взять функцию y=x⁴, то она не является обратной, поскольку значение функции имеет несколько значений аргумента, например y=16, при x=2; x=-2.
Однако, если рассматривать данную функцию только на множестве положительных чисел, она будет обратимой:
y=x⁴;
x=y⁴; ⇒ y=x¹⁾⁴ (х в степени 1/4) -обратная функция
б) у= (5+х)/5 ⇒ х= (5+у)/5 ⇒ 5х= 5+у ⇒ у= 5х - 5 обратная функция.
2) Найти область значений функции f(x)= √x²+6x-1/ x²
Функция имеет смысл, если х≠0.
Пусть выражение √(x²+6*x-1)/x² =а, тогда √(x²+6*x-1) =ах²
Если а=0, то √(x²+6*x-1)=0 ⇒ х²+6х-1=0, дискриминант D= 36+4=40 ⇒ x₁₂= -3±√10. Уравнение имеет корни, значит а=0 годится., это наименьшее значение f(x).
Если а≠0, то x²+6*x-1 =а²х⁴ ⇒ x²+6*x-1 >0 , т.е. на промежутке (-∞;-3-√10)∪(-3+√10) функция f(x)>0 ⇒ область значений Е(f)= (0;+∞)