8 На координатной прямой отмечены точки A, B и C. А B е 1 0 Установите соответствие между точками и их координатами. Точки A 1) 3 B С коОРДИНАТЫ 7 8 2) -0,89 1 3) 8 9 4) 8 5) 3,12
Просто предполагаем что Андреев соврал о том что он из Онеги. Получается Григорьев - Каргополь. Затем, понимаем что в если в Каргополе уже живет Григорьев, то первое утверждение Борисова ложное, тогда Борисов - Коряма. Григорьев действительно из Каргополя, тогда Данилов =/ Вельск. Если Данилов не из Вельска, тогда Андреев - Коряжма. Остается 2 города. Если Данилов =/ Вельск, то тогда Данилов - Онега, а Васильев - Вельск. Если бы мы в первом выбрали другой вариант, то все равно путем логических вычислений, мы бы наткнулись на противоречие.
Просто предполагаем что Андреев соврал о том что он из Онеги. Получается Григорьев - Каргополь. Затем, понимаем что в если в Каргополе уже живет Григорьев, то первое утверждение Борисова ложное, тогда Борисов - Коряма. Григорьев действительно из Каргополя, тогда Данилов =/ Вельск. Если Данилов не из Вельска, тогда Андреев - Коряжма. Остается 2 города. Если Данилов =/ Вельск, то тогда Данилов - Онега, а Васильев - Вельск. Если бы мы в первом выбрали другой вариант, то все равно путем логических вычислений, мы бы наткнулись на противоречие.
f(x) = y = 8x - 5x^(-4) + x^(-1) - x^(4/5);
f'(x) = 8 + 20x^(-5) - x^(-2) - 4/5x^(-1/5);
2)
вначале найдем производную x^(ctgx^2):
g(x) = x^(ctgx^2);
ln(g(x))' = 1/g(x) * g'(x);
g'(x) = g(x)*(lng(x))';
(lng(x))' = (lnx^(ctgx^2))' = (ctgx^2lnx)' = 2*ctgx*(-1/sin^2x)*lnx + ctg^2x/x;
g'(x) = x^(ctg^2x) * (2 * ctgx * (-1/sin^2x) * lnx + (ctg^2x)/x);
f(x) = y = 2x^(ctgx^2)*(5x^3 + x^(1/3));
f'(x) = 2 * g'(x) * (5x^3 + x^(1/3)) + 2 * g(x) * (15x^2 + 1/3x^(-2/3));
f'(x) = 2 * x^(ctg^2x) * (2 * ctgx * (-1/sin^2x) * lnx + (ctg^2x)/x) * (5x^3 + x^(1/3)) + 2 * x^(ctg^2x) * (15x^2 + (1/3)x^(-2/3)).